{"title":"未知符号切换虚拟控制系数非线性系统的规定性能控制","authors":"Jin-Zi Yang;Jin-Xi Zhang;Tianyou Chai","doi":"10.1109/JAS.2025.125135","DOIUrl":null,"url":null,"abstract":"The problem of high-performance tracking control for the lower-triangular systems with unknown sign-switching virtual control coefficients as well as unmatched disturbances is investigated in this paper. Instead of the online estimation algorithm, the sliding mode method and the Nussbaum gain technique, a group of orientation functions are employed to handle the unknown sign-switching virtual control coefficients. The control law is combined with the orientation functions and the barrier functions lumped in a recursive manner. It achieves output tracking with the preassigned rate, overshoot, and accuracy. In contrast with the existing solutions, it is effective for the nearly model-free case, with the requirement for information of neither the system nonlinearities nor their bounding functions of the plant, nor the bounds of the disturbances. In addition, our controller exhibits significant simplicity, without parameter identification, disturbance estimation, function approximation, derivative calculation, dynamic surfaces, or command filtering. Two simulation examples are conducted to substantiate the efficacy and advantages of our approach.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 7","pages":"1381-1390"},"PeriodicalIF":19.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prescribed Performance Control of Nonlinear Systems With Unknown Sign-Switching Virtual Control Coefficients\",\"authors\":\"Jin-Zi Yang;Jin-Xi Zhang;Tianyou Chai\",\"doi\":\"10.1109/JAS.2025.125135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of high-performance tracking control for the lower-triangular systems with unknown sign-switching virtual control coefficients as well as unmatched disturbances is investigated in this paper. Instead of the online estimation algorithm, the sliding mode method and the Nussbaum gain technique, a group of orientation functions are employed to handle the unknown sign-switching virtual control coefficients. The control law is combined with the orientation functions and the barrier functions lumped in a recursive manner. It achieves output tracking with the preassigned rate, overshoot, and accuracy. In contrast with the existing solutions, it is effective for the nearly model-free case, with the requirement for information of neither the system nonlinearities nor their bounding functions of the plant, nor the bounds of the disturbances. In addition, our controller exhibits significant simplicity, without parameter identification, disturbance estimation, function approximation, derivative calculation, dynamic surfaces, or command filtering. Two simulation examples are conducted to substantiate the efficacy and advantages of our approach.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"12 7\",\"pages\":\"1381-1390\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11062734/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11062734/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Prescribed Performance Control of Nonlinear Systems With Unknown Sign-Switching Virtual Control Coefficients
The problem of high-performance tracking control for the lower-triangular systems with unknown sign-switching virtual control coefficients as well as unmatched disturbances is investigated in this paper. Instead of the online estimation algorithm, the sliding mode method and the Nussbaum gain technique, a group of orientation functions are employed to handle the unknown sign-switching virtual control coefficients. The control law is combined with the orientation functions and the barrier functions lumped in a recursive manner. It achieves output tracking with the preassigned rate, overshoot, and accuracy. In contrast with the existing solutions, it is effective for the nearly model-free case, with the requirement for information of neither the system nonlinearities nor their bounding functions of the plant, nor the bounds of the disturbances. In addition, our controller exhibits significant simplicity, without parameter identification, disturbance estimation, function approximation, derivative calculation, dynamic surfaces, or command filtering. Two simulation examples are conducted to substantiate the efficacy and advantages of our approach.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.