{"title":"基于精确换乘行为模型的公交网络设计、时刻表和乘客分配联合优化","authors":"Yunyi Liang;Constantinos Antoniou;Mohammad Sadrani;Jinjun Tang","doi":"10.1109/TITS.2025.3573284","DOIUrl":null,"url":null,"abstract":"This study investigates the problem of joint optimization of transit network design, timetable, and passenger assignment with exact transfer behavior modeling. The problem is formulated as a bi-level mixed-integer bilinear program to capture passengers’ realistic path choice behavior. The upper-level model aims to minimize the weighted sum of the cost of bus route construction, bus route operation, bus station construction, travel time of passengers, the delay caused by failures in aboarding to the bus trips at the origin, the delay caused by failures in transfer between the bus trips, and the overflow delay when the bus trip operates at capacity. The lower-level model aims to minimize the travel time of passengers. The travel time of passengers is formulated as the sum of the waiting time for boarding, the transfer time, and the in-vehicle travel time. The passenger transfer time and the delay caused by failures in transfer between the bus trips are formulated with exact modeling of passenger transfer behavior. This bi-level mixed-integer bilinear program is transformed into an equivalent mixed-integer bilinear program with equilibrium constraints using Karush-Kuhn-Tucker conditions. To seek a solution of good quality to the proposed model while not requiring a large amount of computer memory, a Benders decomposition algorithm integrated with piecewise linearization is developed. A numerical application demonstrates that the proposed model is able to achieve 3.49% lower total cost than the baseline model assuming passenger transfer time to be half of the headway.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 7","pages":"9263-9276"},"PeriodicalIF":7.9000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Optimization of Transit Network Design, Timetable, and Passenger Assignment With Exact Transfer Behavior Modeling\",\"authors\":\"Yunyi Liang;Constantinos Antoniou;Mohammad Sadrani;Jinjun Tang\",\"doi\":\"10.1109/TITS.2025.3573284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the problem of joint optimization of transit network design, timetable, and passenger assignment with exact transfer behavior modeling. The problem is formulated as a bi-level mixed-integer bilinear program to capture passengers’ realistic path choice behavior. The upper-level model aims to minimize the weighted sum of the cost of bus route construction, bus route operation, bus station construction, travel time of passengers, the delay caused by failures in aboarding to the bus trips at the origin, the delay caused by failures in transfer between the bus trips, and the overflow delay when the bus trip operates at capacity. The lower-level model aims to minimize the travel time of passengers. The travel time of passengers is formulated as the sum of the waiting time for boarding, the transfer time, and the in-vehicle travel time. The passenger transfer time and the delay caused by failures in transfer between the bus trips are formulated with exact modeling of passenger transfer behavior. This bi-level mixed-integer bilinear program is transformed into an equivalent mixed-integer bilinear program with equilibrium constraints using Karush-Kuhn-Tucker conditions. To seek a solution of good quality to the proposed model while not requiring a large amount of computer memory, a Benders decomposition algorithm integrated with piecewise linearization is developed. A numerical application demonstrates that the proposed model is able to achieve 3.49% lower total cost than the baseline model assuming passenger transfer time to be half of the headway.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"26 7\",\"pages\":\"9263-9276\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11028633/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11028633/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Joint Optimization of Transit Network Design, Timetable, and Passenger Assignment With Exact Transfer Behavior Modeling
This study investigates the problem of joint optimization of transit network design, timetable, and passenger assignment with exact transfer behavior modeling. The problem is formulated as a bi-level mixed-integer bilinear program to capture passengers’ realistic path choice behavior. The upper-level model aims to minimize the weighted sum of the cost of bus route construction, bus route operation, bus station construction, travel time of passengers, the delay caused by failures in aboarding to the bus trips at the origin, the delay caused by failures in transfer between the bus trips, and the overflow delay when the bus trip operates at capacity. The lower-level model aims to minimize the travel time of passengers. The travel time of passengers is formulated as the sum of the waiting time for boarding, the transfer time, and the in-vehicle travel time. The passenger transfer time and the delay caused by failures in transfer between the bus trips are formulated with exact modeling of passenger transfer behavior. This bi-level mixed-integer bilinear program is transformed into an equivalent mixed-integer bilinear program with equilibrium constraints using Karush-Kuhn-Tucker conditions. To seek a solution of good quality to the proposed model while not requiring a large amount of computer memory, a Benders decomposition algorithm integrated with piecewise linearization is developed. A numerical application demonstrates that the proposed model is able to achieve 3.49% lower total cost than the baseline model assuming passenger transfer time to be half of the headway.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.