红外小目标检测的多尺度通道关注和跨层融合网络

IF 4.4
Shengli Zhou;Tong Liu;Xiaolu Guo;Meibo Lv
{"title":"红外小目标检测的多尺度通道关注和跨层融合网络","authors":"Shengli Zhou;Tong Liu;Xiaolu Guo;Meibo Lv","doi":"10.1109/LGRS.2025.3580709","DOIUrl":null,"url":null,"abstract":"Infrared small target detection (IRSTD) faces challenges due to limited global perception and feature ambiguity in complex scenarios. To address these issues, we propose a novel multiscale channel attention and cross-layer fusion network (MACFNet). The framework integrates three key innovations: 1)the feature convolution attention transformer (FCAT) addresses limited global perception by combining local features and global contexts to enhance target representation; 2) the efficient channel and spatial attention (ECSA) module resolves feature ambiguity by optimizing discriminative feature weighting; and 3) an enhanced M-UNet architecture incorporates channelwise cross fusion transformer (CCT) modules to enable effective cross-scale semantic alignment. Extensive experiments on the SIRST and NUDT-SIRST datasets demonstrate the state-of-the-art performance, achieving significantly higher IoU of 0.8396 and 0.9346, respectively, surpassing the existing model-driven and data-driven methods while maintaining a real-time capable inference speed of 29.7167 FPS.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Channel Attention and Cross-Layer Fusion Network for Infrared Small Target Detection\",\"authors\":\"Shengli Zhou;Tong Liu;Xiaolu Guo;Meibo Lv\",\"doi\":\"10.1109/LGRS.2025.3580709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infrared small target detection (IRSTD) faces challenges due to limited global perception and feature ambiguity in complex scenarios. To address these issues, we propose a novel multiscale channel attention and cross-layer fusion network (MACFNet). The framework integrates three key innovations: 1)the feature convolution attention transformer (FCAT) addresses limited global perception by combining local features and global contexts to enhance target representation; 2) the efficient channel and spatial attention (ECSA) module resolves feature ambiguity by optimizing discriminative feature weighting; and 3) an enhanced M-UNet architecture incorporates channelwise cross fusion transformer (CCT) modules to enable effective cross-scale semantic alignment. Extensive experiments on the SIRST and NUDT-SIRST datasets demonstrate the state-of-the-art performance, achieving significantly higher IoU of 0.8396 and 0.9346, respectively, surpassing the existing model-driven and data-driven methods while maintaining a real-time capable inference speed of 29.7167 FPS.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11039771/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11039771/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在复杂场景下,红外小目标检测面临全局感知受限和特征模糊的挑战。为了解决这些问题,我们提出了一种新的多尺度通道关注和跨层融合网络(MACFNet)。该框架集成了三个关键创新:1)特征卷积注意转换器(FCAT)通过结合局部特征和全局上下文来解决有限的全局感知问题,以增强目标表示;2)高效通道与空间注意(ECSA)模块通过优化判别性特征权重来解决特征歧义;3)增强的M-UNet体系结构集成了信道交叉融合变压器(CCT)模块,以实现有效的跨尺度语义对齐。在SIRST和NUDT-SIRST数据集上的大量实验证明了最先进的性能,IoU分别达到了0.8396和0.9346,超过了现有的模型驱动和数据驱动方法,同时保持了29.7167 FPS的实时推理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Channel Attention and Cross-Layer Fusion Network for Infrared Small Target Detection
Infrared small target detection (IRSTD) faces challenges due to limited global perception and feature ambiguity in complex scenarios. To address these issues, we propose a novel multiscale channel attention and cross-layer fusion network (MACFNet). The framework integrates three key innovations: 1)the feature convolution attention transformer (FCAT) addresses limited global perception by combining local features and global contexts to enhance target representation; 2) the efficient channel and spatial attention (ECSA) module resolves feature ambiguity by optimizing discriminative feature weighting; and 3) an enhanced M-UNet architecture incorporates channelwise cross fusion transformer (CCT) modules to enable effective cross-scale semantic alignment. Extensive experiments on the SIRST and NUDT-SIRST datasets demonstrate the state-of-the-art performance, achieving significantly higher IoU of 0.8396 and 0.9346, respectively, surpassing the existing model-driven and data-driven methods while maintaining a real-time capable inference speed of 29.7167 FPS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信