{"title":"城市空域有限视野下多无人机协同追击策略:多智能体强化学习方法","authors":"Zhe Peng;Guohua Wu;Biao Luo;Ling Wang","doi":"10.1109/JAS.2024.124965","DOIUrl":null,"url":null,"abstract":"The application of multiple unmanned aerial vehicles (UAVs) for the pursuit and capture of unauthorized UAVs has emerged as a novel approach to ensuring the safety of urban airspace. However, pursuit UAVs necessitate the utilization of their own sensors to proactively gather information from the unauthorized UAV. Considering the restricted sensing range of sensors, this paper proposes a multi-UAV with limited visual field pursuit-evasion (MUV-PE) problem. Each pursuer has a visual field characterized by limited perception distance and viewing angle, potentially obstructed by buildings. Only when the unauthorized UAV, i.e., the evader, enters the visual field of any pursuer can its position be acquired. The objective of the pursuers is to capture the evader as soon as possible without collision. To address this problem, we propose the normalizing flow actor with graph attention critic (NAGC) algorithm, a multi-agent reinforcement learning (MARL) approach. NAGC executes normalizing flows to augment the flexibility of policy network, enabling the agent to sample actions from more intricate distributions rather than common distributions. To enhance the capability of simultaneously comprehending spatial relationships among multiple UAVs and environmental obstacles, NAGC integrates the “obstacle-target” graph attention networks, significantly aiding pursuers in supporting search or pursuit activities. Extensive experiments conducted in a high-precision simulator validate the promising performance of the NAGC algorithm.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 7","pages":"1350-1367"},"PeriodicalIF":19.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-UAV Cooperative Pursuit Strategy with Limited Visual Field in Urban Airspace: A Multi-Agent Reinforcement Learning Approach\",\"authors\":\"Zhe Peng;Guohua Wu;Biao Luo;Ling Wang\",\"doi\":\"10.1109/JAS.2024.124965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of multiple unmanned aerial vehicles (UAVs) for the pursuit and capture of unauthorized UAVs has emerged as a novel approach to ensuring the safety of urban airspace. However, pursuit UAVs necessitate the utilization of their own sensors to proactively gather information from the unauthorized UAV. Considering the restricted sensing range of sensors, this paper proposes a multi-UAV with limited visual field pursuit-evasion (MUV-PE) problem. Each pursuer has a visual field characterized by limited perception distance and viewing angle, potentially obstructed by buildings. Only when the unauthorized UAV, i.e., the evader, enters the visual field of any pursuer can its position be acquired. The objective of the pursuers is to capture the evader as soon as possible without collision. To address this problem, we propose the normalizing flow actor with graph attention critic (NAGC) algorithm, a multi-agent reinforcement learning (MARL) approach. NAGC executes normalizing flows to augment the flexibility of policy network, enabling the agent to sample actions from more intricate distributions rather than common distributions. To enhance the capability of simultaneously comprehending spatial relationships among multiple UAVs and environmental obstacles, NAGC integrates the “obstacle-target” graph attention networks, significantly aiding pursuers in supporting search or pursuit activities. Extensive experiments conducted in a high-precision simulator validate the promising performance of the NAGC algorithm.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"12 7\",\"pages\":\"1350-1367\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10938048/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10938048/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Multi-UAV Cooperative Pursuit Strategy with Limited Visual Field in Urban Airspace: A Multi-Agent Reinforcement Learning Approach
The application of multiple unmanned aerial vehicles (UAVs) for the pursuit and capture of unauthorized UAVs has emerged as a novel approach to ensuring the safety of urban airspace. However, pursuit UAVs necessitate the utilization of their own sensors to proactively gather information from the unauthorized UAV. Considering the restricted sensing range of sensors, this paper proposes a multi-UAV with limited visual field pursuit-evasion (MUV-PE) problem. Each pursuer has a visual field characterized by limited perception distance and viewing angle, potentially obstructed by buildings. Only when the unauthorized UAV, i.e., the evader, enters the visual field of any pursuer can its position be acquired. The objective of the pursuers is to capture the evader as soon as possible without collision. To address this problem, we propose the normalizing flow actor with graph attention critic (NAGC) algorithm, a multi-agent reinforcement learning (MARL) approach. NAGC executes normalizing flows to augment the flexibility of policy network, enabling the agent to sample actions from more intricate distributions rather than common distributions. To enhance the capability of simultaneously comprehending spatial relationships among multiple UAVs and environmental obstacles, NAGC integrates the “obstacle-target” graph attention networks, significantly aiding pursuers in supporting search or pursuit activities. Extensive experiments conducted in a high-precision simulator validate the promising performance of the NAGC algorithm.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.