Ran Wei;Alfredo Garcia;Anthony McDonald;Gustav Markkula;Johan Engstrom;Matthew O'Kelly
{"title":"学习驾驶员感知与控制的主动推理模型:在车辆跟车中的应用","authors":"Ran Wei;Alfredo Garcia;Anthony McDonald;Gustav Markkula;Johan Engstrom;Matthew O'Kelly","doi":"10.1109/TITS.2025.3574552","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a general estimation methodology for learning a model of human perception and control in a sensorimotor control task based upon a finite set of demonstrations. The model’s structure consists of (i) the agent’s internal representation of how the environment and associated observations evolve as a result of control actions and (ii) the agent’s preferences over observable outcomes. We consider a model’s structure specification consistent with active inference, a theory of human perception and behavior from cognitive science. According to active inference, the agent acts upon the world so as to minimize surprise defined as a measure of the extent to which an agent’s current sensory observations differ from its preferred sensory observations. We propose a bi-level optimization approach to estimation which relies on a structural assumption on prior distributions that parameterize the statistical accuracy of the human agent’s model of the environment. To illustrate the proposed methodology, we present the estimation of a model for car-following behavior based upon a naturalistic dataset. Overall, the results indicate that learning active inference models of human perception and control from data is a promising alternative to closed-box models of driving.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 7","pages":"9475-9490"},"PeriodicalIF":7.9000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning an Active Inference Model of Driver Perception and Control: Application to Vehicle Car-Following\",\"authors\":\"Ran Wei;Alfredo Garcia;Anthony McDonald;Gustav Markkula;Johan Engstrom;Matthew O'Kelly\",\"doi\":\"10.1109/TITS.2025.3574552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a general estimation methodology for learning a model of human perception and control in a sensorimotor control task based upon a finite set of demonstrations. The model’s structure consists of (i) the agent’s internal representation of how the environment and associated observations evolve as a result of control actions and (ii) the agent’s preferences over observable outcomes. We consider a model’s structure specification consistent with active inference, a theory of human perception and behavior from cognitive science. According to active inference, the agent acts upon the world so as to minimize surprise defined as a measure of the extent to which an agent’s current sensory observations differ from its preferred sensory observations. We propose a bi-level optimization approach to estimation which relies on a structural assumption on prior distributions that parameterize the statistical accuracy of the human agent’s model of the environment. To illustrate the proposed methodology, we present the estimation of a model for car-following behavior based upon a naturalistic dataset. Overall, the results indicate that learning active inference models of human perception and control from data is a promising alternative to closed-box models of driving.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"26 7\",\"pages\":\"9475-9490\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11029985/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11029985/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Learning an Active Inference Model of Driver Perception and Control: Application to Vehicle Car-Following
In this paper we introduce a general estimation methodology for learning a model of human perception and control in a sensorimotor control task based upon a finite set of demonstrations. The model’s structure consists of (i) the agent’s internal representation of how the environment and associated observations evolve as a result of control actions and (ii) the agent’s preferences over observable outcomes. We consider a model’s structure specification consistent with active inference, a theory of human perception and behavior from cognitive science. According to active inference, the agent acts upon the world so as to minimize surprise defined as a measure of the extent to which an agent’s current sensory observations differ from its preferred sensory observations. We propose a bi-level optimization approach to estimation which relies on a structural assumption on prior distributions that parameterize the statistical accuracy of the human agent’s model of the environment. To illustrate the proposed methodology, we present the estimation of a model for car-following behavior based upon a naturalistic dataset. Overall, the results indicate that learning active inference models of human perception and control from data is a promising alternative to closed-box models of driving.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.