Min Hou , Mingda Li , Yulin Li , Xiaobo Wu , Die Long , Di Sun , Jincheng Zeng
{"title":"基于dna的蛋白水解靶向嵌合体技术的进展:靶向癌症治疗中先前不可药物蛋白的新策略","authors":"Min Hou , Mingda Li , Yulin Li , Xiaobo Wu , Die Long , Di Sun , Jincheng Zeng","doi":"10.1016/j.bmc.2025.118297","DOIUrl":null,"url":null,"abstract":"<div><div>Targeted protein degradation (TPD) technology has emerged as a transformative therapeutic strategy for selectively eliminating aberrant proteins across diverse pathological conditions. This comprehensive review systematically examines recent advances in DNA-based proteolysis-targeting chimeras (DNA-PROTACs), which harness the exceptional specificity and binding affinity of DNA to substantially expand the targetable protein repertoire beyond conventional small molecule PROTACs. Through extensive literature analysis encompassing mechanistic studies, preclinical evaluations, and clinical investigations, we demonstrate that DNA-PROTACs effectively target previously undruggable proteins, including transcription factors, cell membrane proteins, and DNA damage response mediators. These innovative chimeric constructs exhibit superior catalytic efficiency through E3 ubiquitin ligase recruitment via the proteasomal degradation pathway, with unique advantages in linker optimization enabled by precise nucleotide-level control during DNA synthesis. Cell-based assays consistently reveal enhanced selectivity profiles and expanded therapeutic windows compared to traditional PROTAC modalities and alternative RNA-based approaches. Despite promising preclinical outcomes and advancing clinical development timelines, challenges in delivery optimization, molecular stability enhancement, and clinical translation persist. The integration of artificial intelligence-assisted drug design platforms and in vivo aptamer evolution technologies presents unprecedented opportunities for accelerating DNA-PROTACs development toward sub-nanomolar potency targets, positioning this technology as a paradigm-shifting approach in precision medicine across oncology, immunotherapy, and neurodegeneration therapeutics.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"129 ","pages":"Article 118297"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in DNA-based proteolysis-targeting chimeras technology: Novel strategies for targeting previously undruggable proteins in cancer therapy\",\"authors\":\"Min Hou , Mingda Li , Yulin Li , Xiaobo Wu , Die Long , Di Sun , Jincheng Zeng\",\"doi\":\"10.1016/j.bmc.2025.118297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Targeted protein degradation (TPD) technology has emerged as a transformative therapeutic strategy for selectively eliminating aberrant proteins across diverse pathological conditions. This comprehensive review systematically examines recent advances in DNA-based proteolysis-targeting chimeras (DNA-PROTACs), which harness the exceptional specificity and binding affinity of DNA to substantially expand the targetable protein repertoire beyond conventional small molecule PROTACs. Through extensive literature analysis encompassing mechanistic studies, preclinical evaluations, and clinical investigations, we demonstrate that DNA-PROTACs effectively target previously undruggable proteins, including transcription factors, cell membrane proteins, and DNA damage response mediators. These innovative chimeric constructs exhibit superior catalytic efficiency through E3 ubiquitin ligase recruitment via the proteasomal degradation pathway, with unique advantages in linker optimization enabled by precise nucleotide-level control during DNA synthesis. Cell-based assays consistently reveal enhanced selectivity profiles and expanded therapeutic windows compared to traditional PROTAC modalities and alternative RNA-based approaches. Despite promising preclinical outcomes and advancing clinical development timelines, challenges in delivery optimization, molecular stability enhancement, and clinical translation persist. The integration of artificial intelligence-assisted drug design platforms and in vivo aptamer evolution technologies presents unprecedented opportunities for accelerating DNA-PROTACs development toward sub-nanomolar potency targets, positioning this technology as a paradigm-shifting approach in precision medicine across oncology, immunotherapy, and neurodegeneration therapeutics.</div></div>\",\"PeriodicalId\":255,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry\",\"volume\":\"129 \",\"pages\":\"Article 118297\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096808962500238X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096808962500238X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Advances in DNA-based proteolysis-targeting chimeras technology: Novel strategies for targeting previously undruggable proteins in cancer therapy
Targeted protein degradation (TPD) technology has emerged as a transformative therapeutic strategy for selectively eliminating aberrant proteins across diverse pathological conditions. This comprehensive review systematically examines recent advances in DNA-based proteolysis-targeting chimeras (DNA-PROTACs), which harness the exceptional specificity and binding affinity of DNA to substantially expand the targetable protein repertoire beyond conventional small molecule PROTACs. Through extensive literature analysis encompassing mechanistic studies, preclinical evaluations, and clinical investigations, we demonstrate that DNA-PROTACs effectively target previously undruggable proteins, including transcription factors, cell membrane proteins, and DNA damage response mediators. These innovative chimeric constructs exhibit superior catalytic efficiency through E3 ubiquitin ligase recruitment via the proteasomal degradation pathway, with unique advantages in linker optimization enabled by precise nucleotide-level control during DNA synthesis. Cell-based assays consistently reveal enhanced selectivity profiles and expanded therapeutic windows compared to traditional PROTAC modalities and alternative RNA-based approaches. Despite promising preclinical outcomes and advancing clinical development timelines, challenges in delivery optimization, molecular stability enhancement, and clinical translation persist. The integration of artificial intelligence-assisted drug design platforms and in vivo aptamer evolution technologies presents unprecedented opportunities for accelerating DNA-PROTACs development toward sub-nanomolar potency targets, positioning this technology as a paradigm-shifting approach in precision medicine across oncology, immunotherapy, and neurodegeneration therapeutics.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.