CA-VAD:字幕感知视频监控异常检测

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Debi Prasad Senapati, Santosh Kumar Pani, Santos Kumar Baliarsingh, Prabhu Prasad Dev, Hrudaya Kumar Tripathy
{"title":"CA-VAD:字幕感知视频监控异常检测","authors":"Debi Prasad Senapati,&nbsp;Santosh Kumar Pani,&nbsp;Santos Kumar Baliarsingh,&nbsp;Prabhu Prasad Dev,&nbsp;Hrudaya Kumar Tripathy","doi":"10.1016/j.jvcir.2025.104521","DOIUrl":null,"url":null,"abstract":"<div><div>In video anomaly detection, identifying abnormal events using weakly supervised video-level labels is often tackled with multiple instance learning (MIL). However, traditional methods struggle to capture temporal relationships between segments and extract discriminative features for distinguishing normal from anomalous events. To address these challenges, we propose Caption Aware Video Anomaly Detection (CA-VAD), a framework that integrates visual and textual features for enhanced semantic understanding of scenes. Unlike conventional approaches relying solely on visual data, CA-VAD uses a pre-trained video captioning model to generate textual descriptions, transforming them into semantic embeddings that enrich visual features. These textual cues improve the differentiation between normal and abnormal events. CA-VAD incorporates an Attention-based Multi-Scale Temporal Network (A-MTN) to process visual and textual inputs, capturing temporal dynamics effectively. Experiments on CUHK Avenue, ShanghaiTech, UCSD Ped2, and XD-Violence datasets show that CA-VAD outperforms state-of-the-art methods, achieving superior accuracy and robustness.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"111 ","pages":"Article 104521"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CA-VAD: Caption Aware Video Anomaly Detection in surveillance videos\",\"authors\":\"Debi Prasad Senapati,&nbsp;Santosh Kumar Pani,&nbsp;Santos Kumar Baliarsingh,&nbsp;Prabhu Prasad Dev,&nbsp;Hrudaya Kumar Tripathy\",\"doi\":\"10.1016/j.jvcir.2025.104521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In video anomaly detection, identifying abnormal events using weakly supervised video-level labels is often tackled with multiple instance learning (MIL). However, traditional methods struggle to capture temporal relationships between segments and extract discriminative features for distinguishing normal from anomalous events. To address these challenges, we propose Caption Aware Video Anomaly Detection (CA-VAD), a framework that integrates visual and textual features for enhanced semantic understanding of scenes. Unlike conventional approaches relying solely on visual data, CA-VAD uses a pre-trained video captioning model to generate textual descriptions, transforming them into semantic embeddings that enrich visual features. These textual cues improve the differentiation between normal and abnormal events. CA-VAD incorporates an Attention-based Multi-Scale Temporal Network (A-MTN) to process visual and textual inputs, capturing temporal dynamics effectively. Experiments on CUHK Avenue, ShanghaiTech, UCSD Ped2, and XD-Violence datasets show that CA-VAD outperforms state-of-the-art methods, achieving superior accuracy and robustness.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"111 \",\"pages\":\"Article 104521\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S104732032500135X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104732032500135X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在视频异常检测中,使用弱监督视频级标签识别异常事件通常采用多实例学习(MIL)方法。然而,传统的方法很难捕捉片段之间的时间关系,并提取区分正常和异常事件的判别特征。为了解决这些挑战,我们提出了字幕感知视频异常检测(CA-VAD),这是一个集成了视觉和文本特征的框架,用于增强对场景的语义理解。与仅依赖视觉数据的传统方法不同,CA-VAD使用预训练的视频字幕模型来生成文本描述,并将其转换为丰富视觉特征的语义嵌入。这些文本线索有助于区分正常事件和异常事件。CA-VAD结合了一个基于注意力的多尺度时间网络(A-MTN)来处理视觉和文本输入,有效地捕获时间动态。在中大大道、上海科技、UCSD Ped2和XD-Violence数据集上的实验表明,CA-VAD优于最先进的方法,具有更高的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CA-VAD: Caption Aware Video Anomaly Detection in surveillance videos
In video anomaly detection, identifying abnormal events using weakly supervised video-level labels is often tackled with multiple instance learning (MIL). However, traditional methods struggle to capture temporal relationships between segments and extract discriminative features for distinguishing normal from anomalous events. To address these challenges, we propose Caption Aware Video Anomaly Detection (CA-VAD), a framework that integrates visual and textual features for enhanced semantic understanding of scenes. Unlike conventional approaches relying solely on visual data, CA-VAD uses a pre-trained video captioning model to generate textual descriptions, transforming them into semantic embeddings that enrich visual features. These textual cues improve the differentiation between normal and abnormal events. CA-VAD incorporates an Attention-based Multi-Scale Temporal Network (A-MTN) to process visual and textual inputs, capturing temporal dynamics effectively. Experiments on CUHK Avenue, ShanghaiTech, UCSD Ped2, and XD-Violence datasets show that CA-VAD outperforms state-of-the-art methods, achieving superior accuracy and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信