广义类别发现的长尾学习

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Cuong Manh Hoang
{"title":"广义类别发现的长尾学习","authors":"Cuong Manh Hoang","doi":"10.1016/j.neucom.2025.130745","DOIUrl":null,"url":null,"abstract":"<div><div>Generalized Category Discovery (GCD) utilizes labeled samples of known classes to discover novel classes in unlabeled samples. Existing methods show effective performance on artificial datasets with balanced distributions. However, real-world datasets are always imbalanced, significantly affecting the effectiveness of these methods. To solve this problem, we propose a novel framework that performs generalized category discovery in long-tailed distributions. We first present a self-guided labeling technique that uses a learnable distribution to generate pseudo-labels, resulting in less biased classifiers. We then introduce a representation balancing process to derive discriminative representations. By mining sample neighborhoods, this process encourages the model to focus more on tail classes. We conduct experiments on public datasets to demonstrate the effectiveness of the proposed framework. The results show that our model exceeds previous state-of-the-art methods.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"650 ","pages":"Article 130745"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-tailed learning for generalized category discovery\",\"authors\":\"Cuong Manh Hoang\",\"doi\":\"10.1016/j.neucom.2025.130745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Generalized Category Discovery (GCD) utilizes labeled samples of known classes to discover novel classes in unlabeled samples. Existing methods show effective performance on artificial datasets with balanced distributions. However, real-world datasets are always imbalanced, significantly affecting the effectiveness of these methods. To solve this problem, we propose a novel framework that performs generalized category discovery in long-tailed distributions. We first present a self-guided labeling technique that uses a learnable distribution to generate pseudo-labels, resulting in less biased classifiers. We then introduce a representation balancing process to derive discriminative representations. By mining sample neighborhoods, this process encourages the model to focus more on tail classes. We conduct experiments on public datasets to demonstrate the effectiveness of the proposed framework. The results show that our model exceeds previous state-of-the-art methods.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"650 \",\"pages\":\"Article 130745\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225014171\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225014171","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

广义类别发现(GCD)利用已知类别的标记样本来发现未标记样本中的新类别。现有方法在具有平衡分布的人工数据集上表现出有效的性能。然而,现实世界的数据集总是不平衡的,这极大地影响了这些方法的有效性。为了解决这个问题,我们提出了一个在长尾分布中执行广义类别发现的新框架。我们首先提出了一种自引导标记技术,该技术使用可学习分布来生成伪标签,从而产生较少偏差的分类器。然后引入表征平衡过程来推导判别表征。通过挖掘样本邻域,这个过程鼓励模型更多地关注尾部类。我们在公共数据集上进行了实验,以证明所提出框架的有效性。结果表明,我们的模型超过了以前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-tailed learning for generalized category discovery
Generalized Category Discovery (GCD) utilizes labeled samples of known classes to discover novel classes in unlabeled samples. Existing methods show effective performance on artificial datasets with balanced distributions. However, real-world datasets are always imbalanced, significantly affecting the effectiveness of these methods. To solve this problem, we propose a novel framework that performs generalized category discovery in long-tailed distributions. We first present a self-guided labeling technique that uses a learnable distribution to generate pseudo-labels, resulting in less biased classifiers. We then introduce a representation balancing process to derive discriminative representations. By mining sample neighborhoods, this process encourages the model to focus more on tail classes. We conduct experiments on public datasets to demonstrate the effectiveness of the proposed framework. The results show that our model exceeds previous state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信