Navier-Stokes方程弱解的无粘极限

IF 1.3 2区 数学 Q1 MATHEMATICS
Jiangyu Shuai, Ke Wang
{"title":"Navier-Stokes方程弱解的无粘极限","authors":"Jiangyu Shuai,&nbsp;Ke Wang","doi":"10.1016/j.na.2025.113865","DOIUrl":null,"url":null,"abstract":"<div><div>The paper analyzes the inviscid limit of weak solutions to the incompressible Navier–Stokes equations within physical boundaries. We establish a sufficient regularity condition that ensures the Navier–Stokes solutions exhibit global viscous dissipation. Moreover, we prove that as the viscous coefficient tends to zero, the weak solutions converge to those of the Euler equations. We assume that the weak solutions are uniformly bounded with respect to viscosity in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>3</mn></mrow></msup><mfenced><mrow><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>α</mi><mo>,</mo><mi>∞</mi></mrow></msubsup></mrow></mfenced></mrow></math></span> in the interior domain, and that certain mean integral conditions in the space–time region exhibit prescribed decay rates near the boundary.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113865"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on the inviscid limit of weak solutions of the Navier–Stokes equations\",\"authors\":\"Jiangyu Shuai,&nbsp;Ke Wang\",\"doi\":\"10.1016/j.na.2025.113865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper analyzes the inviscid limit of weak solutions to the incompressible Navier–Stokes equations within physical boundaries. We establish a sufficient regularity condition that ensures the Navier–Stokes solutions exhibit global viscous dissipation. Moreover, we prove that as the viscous coefficient tends to zero, the weak solutions converge to those of the Euler equations. We assume that the weak solutions are uniformly bounded with respect to viscosity in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>3</mn></mrow></msup><mfenced><mrow><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>α</mi><mo>,</mo><mi>∞</mi></mrow></msubsup></mrow></mfenced></mrow></math></span> in the interior domain, and that certain mean integral conditions in the space–time region exhibit prescribed decay rates near the boundary.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113865\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001191\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001191","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了物理边界内不可压缩Navier-Stokes方程弱解的无粘极限。建立了保证Navier-Stokes解具有全局粘性耗散的充分正则性条件。此外,我们证明了当粘性系数趋于零时,弱解收敛于欧拉方程的弱解。我们假设弱解在L30,T;B3α,∞内域中的黏度是一致有界的,并且在时空区域的某些平均积分条件在边界附近表现出规定的衰减率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on the inviscid limit of weak solutions of the Navier–Stokes equations
The paper analyzes the inviscid limit of weak solutions to the incompressible Navier–Stokes equations within physical boundaries. We establish a sufficient regularity condition that ensures the Navier–Stokes solutions exhibit global viscous dissipation. Moreover, we prove that as the viscous coefficient tends to zero, the weak solutions converge to those of the Euler equations. We assume that the weak solutions are uniformly bounded with respect to viscosity in L30,T;B3α, in the interior domain, and that certain mean integral conditions in the space–time region exhibit prescribed decay rates near the boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信