{"title":"S3中环形区域上Brezis-Nirenberg问题径向正解的唯一性和多重存在性","authors":"Naoki Shioji , Satoshi Tanaka , Kohtaro Watanabe","doi":"10.1016/j.na.2025.113886","DOIUrl":null,"url":null,"abstract":"<div><div>The uniqueness and multiple existence of positive radial solutions to the Brezis-Nirenberg problem on a domain in the 3-dimensional unit sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub><mi>U</mi><mo>−</mo><mi>λ</mi><mi>U</mi><mo>+</mo><msup><mrow><mi>U</mi></mrow><mrow><mi>p</mi></mrow></msup></mtd><mtd><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>U</mi><mo>></mo><mn>0</mn></mtd><mtd></mtd><mtd><mtext>in</mtext><msub><mrow><mi>Ω</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mtext>,</mtext></mtd></mtr><mtr><mtd><mi>U</mi></mtd><mtd><mo>=</mo><mn>0</mn></mtd><mtd></mtd><mtd><mtext>on</mtext><mi>∂</mi><msub><mrow><mi>Ω</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mtext>,</mtext></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>for <span><math><mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mi>λ</mi><mo>≤</mo><mn>1</mn></mrow></math></span> are shown, where <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span> is the Laplace–Beltrami operator, <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is the first eigenvalue of <span><math><mrow><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> is an annular domain in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>: whose great circle distance (geodesic distance) from <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> is greater than <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and less than <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. A solution is said to be radial if it depends only on this geodesic distance. It is proved that the number of positive radial solutions of the problem changes with respect to the exponent <span><math><mi>p</mi></math></span> and parameter <span><math><mi>λ</mi></math></span> when <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>ɛ</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mi>π</mi><mo>−</mo><mi>ɛ</mi></mrow></math></span> and <span><math><mrow><mn>0</mn><mo><</mo><mi>ɛ</mi></mrow></math></span> is sufficiently small.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113886"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness and multiple existence of positive radial solutions of the Brezis-Nirenberg problem on annular domains in S3\",\"authors\":\"Naoki Shioji , Satoshi Tanaka , Kohtaro Watanabe\",\"doi\":\"10.1016/j.na.2025.113886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The uniqueness and multiple existence of positive radial solutions to the Brezis-Nirenberg problem on a domain in the 3-dimensional unit sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub><mi>U</mi><mo>−</mo><mi>λ</mi><mi>U</mi><mo>+</mo><msup><mrow><mi>U</mi></mrow><mrow><mi>p</mi></mrow></msup></mtd><mtd><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>U</mi><mo>></mo><mn>0</mn></mtd><mtd></mtd><mtd><mtext>in</mtext><msub><mrow><mi>Ω</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mtext>,</mtext></mtd></mtr><mtr><mtd><mi>U</mi></mtd><mtd><mo>=</mo><mn>0</mn></mtd><mtd></mtd><mtd><mtext>on</mtext><mi>∂</mi><msub><mrow><mi>Ω</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mtext>,</mtext></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>for <span><math><mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mi>λ</mi><mo>≤</mo><mn>1</mn></mrow></math></span> are shown, where <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span> is the Laplace–Beltrami operator, <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is the first eigenvalue of <span><math><mrow><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> is an annular domain in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>: whose great circle distance (geodesic distance) from <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> is greater than <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and less than <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. A solution is said to be radial if it depends only on this geodesic distance. It is proved that the number of positive radial solutions of the problem changes with respect to the exponent <span><math><mi>p</mi></math></span> and parameter <span><math><mi>λ</mi></math></span> when <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>ɛ</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mi>π</mi><mo>−</mo><mi>ɛ</mi></mrow></math></span> and <span><math><mrow><mn>0</mn><mo><</mo><mi>ɛ</mi></mrow></math></span> is sufficiently small.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113886\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001403\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001403","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Uniqueness and multiple existence of positive radial solutions of the Brezis-Nirenberg problem on annular domains in S3
The uniqueness and multiple existence of positive radial solutions to the Brezis-Nirenberg problem on a domain in the 3-dimensional unit sphere for are shown, where is the Laplace–Beltrami operator, is the first eigenvalue of and is an annular domain in : whose great circle distance (geodesic distance) from is greater than and less than . A solution is said to be radial if it depends only on this geodesic distance. It is proved that the number of positive radial solutions of the problem changes with respect to the exponent and parameter when , and is sufficiently small.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.