S3中环形区域上Brezis-Nirenberg问题径向正解的唯一性和多重存在性

IF 1.3 2区 数学 Q1 MATHEMATICS
Naoki Shioji , Satoshi Tanaka , Kohtaro Watanabe
{"title":"S3中环形区域上Brezis-Nirenberg问题径向正解的唯一性和多重存在性","authors":"Naoki Shioji ,&nbsp;Satoshi Tanaka ,&nbsp;Kohtaro Watanabe","doi":"10.1016/j.na.2025.113886","DOIUrl":null,"url":null,"abstract":"<div><div>The uniqueness and multiple existence of positive radial solutions to the Brezis-Nirenberg problem on a domain in the 3-dimensional unit sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub><mi>U</mi><mo>−</mo><mi>λ</mi><mi>U</mi><mo>+</mo><msup><mrow><mi>U</mi></mrow><mrow><mi>p</mi></mrow></msup></mtd><mtd><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>U</mi><mo>&gt;</mo><mn>0</mn></mtd><mtd></mtd><mtd><mtext>in</mtext><msub><mrow><mi>Ω</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mtext>,</mtext></mtd></mtr><mtr><mtd><mi>U</mi></mtd><mtd><mo>=</mo><mn>0</mn></mtd><mtd></mtd><mtd><mtext>on</mtext><mi>∂</mi><msub><mrow><mi>Ω</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mtext>,</mtext></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>for <span><math><mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mi>λ</mi><mo>≤</mo><mn>1</mn></mrow></math></span> are shown, where <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span> is the Laplace–Beltrami operator, <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is the first eigenvalue of <span><math><mrow><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> is an annular domain in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>: whose great circle distance (geodesic distance) from <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> is greater than <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and less than <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. A solution is said to be radial if it depends only on this geodesic distance. It is proved that the number of positive radial solutions of the problem changes with respect to the exponent <span><math><mi>p</mi></math></span> and parameter <span><math><mi>λ</mi></math></span> when <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>ɛ</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mi>π</mi><mo>−</mo><mi>ɛ</mi></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>ɛ</mi></mrow></math></span> is sufficiently small.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113886"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness and multiple existence of positive radial solutions of the Brezis-Nirenberg problem on annular domains in S3\",\"authors\":\"Naoki Shioji ,&nbsp;Satoshi Tanaka ,&nbsp;Kohtaro Watanabe\",\"doi\":\"10.1016/j.na.2025.113886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The uniqueness and multiple existence of positive radial solutions to the Brezis-Nirenberg problem on a domain in the 3-dimensional unit sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub><mi>U</mi><mo>−</mo><mi>λ</mi><mi>U</mi><mo>+</mo><msup><mrow><mi>U</mi></mrow><mrow><mi>p</mi></mrow></msup></mtd><mtd><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>U</mi><mo>&gt;</mo><mn>0</mn></mtd><mtd></mtd><mtd><mtext>in</mtext><msub><mrow><mi>Ω</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mtext>,</mtext></mtd></mtr><mtr><mtd><mi>U</mi></mtd><mtd><mo>=</mo><mn>0</mn></mtd><mtd></mtd><mtd><mtext>on</mtext><mi>∂</mi><msub><mrow><mi>Ω</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mtext>,</mtext></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>for <span><math><mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mi>λ</mi><mo>≤</mo><mn>1</mn></mrow></math></span> are shown, where <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span> is the Laplace–Beltrami operator, <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is the first eigenvalue of <span><math><mrow><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> is an annular domain in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>: whose great circle distance (geodesic distance) from <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> is greater than <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and less than <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. A solution is said to be radial if it depends only on this geodesic distance. It is proved that the number of positive radial solutions of the problem changes with respect to the exponent <span><math><mi>p</mi></math></span> and parameter <span><math><mi>λ</mi></math></span> when <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>ɛ</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mi>π</mi><mo>−</mo><mi>ɛ</mi></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>ɛ</mi></mrow></math></span> is sufficiently small.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113886\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001403\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001403","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了三维单位球S3 ΔS3U−λ 1<;λ≤1的域上Brezis-Nirenberg问题径向正解的唯一性和多重存在性,其中ΔS3为Laplace-Beltrami算子,λ1为−ΔS3和Ωθ1的第一特征值,θ2为S3中的一个环域,其距(0,0,0,1)的大圆距离(测地距离)大于θ1小于θ2。如果一个解只依赖于测地线距离,我们就说它是径向的。证明了当θ1= æ, θ2=π−æ和0<; æ足够小时,问题的正径向解的个数相对于指数p和参数λ是变化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness and multiple existence of positive radial solutions of the Brezis-Nirenberg problem on annular domains in S3
The uniqueness and multiple existence of positive radial solutions to the Brezis-Nirenberg problem on a domain in the 3-dimensional unit sphere S3 ΔS3UλU+Up=0,U>0inΩθ1,θ2,U=0onΩθ1,θ2,for λ1<λ1 are shown, where ΔS3 is the Laplace–Beltrami operator, λ1 is the first eigenvalue of ΔS3 and Ωθ1,θ2 is an annular domain in S3: whose great circle distance (geodesic distance) from (0,0,0,1) is greater than θ1 and less than θ2. A solution is said to be radial if it depends only on this geodesic distance. It is proved that the number of positive radial solutions of the problem changes with respect to the exponent p and parameter λ when θ1=ɛ, θ2=πɛ and 0<ɛ is sufficiently small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信