人工智能领域知识:使用概念建模来提高机器学习的准确性和可解释性

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Veda C. Storey , Jeffrey Parsons , Arturo Castellanos Bueso , Monica Chiarini Tremblay , Roman Lukyanenko , Alfred Castillo , Wolfgang Maaß
{"title":"人工智能领域知识:使用概念建模来提高机器学习的准确性和可解释性","authors":"Veda C. Storey ,&nbsp;Jeffrey Parsons ,&nbsp;Arturo Castellanos Bueso ,&nbsp;Monica Chiarini Tremblay ,&nbsp;Roman Lukyanenko ,&nbsp;Alfred Castillo ,&nbsp;Wolfgang Maaß","doi":"10.1016/j.datak.2025.102482","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning enables the extraction of useful information from large, diverse datasets. However, despite many successful applications, machine learning continues to suffer from performance and transparency issues. These challenges can be partially attributed to the limited use of domain knowledge by machine learning models. This research proposes using the domain knowledge represented in conceptual models to improve the preparation of the data used to train machine learning models. We develop and demonstrate a method, called the <em>Conceptual Modeling for Machine Learning (CMML)</em>, which is comprised of guidelines for data preparation in machine learning and based on conceptual modeling constructs and principles. To assess the impact of CMML on machine learning outcomes, we first applied it to two real-world problems to evaluate its impact on model performance. We then solicited an assessment by data scientists on the applicability of the method. These results demonstrate the value of CMML for improving machine learning outcomes.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"160 ","pages":"Article 102482"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain knowledge in artificial intelligence: Using conceptual modeling to increase machine learning accuracy and explainability\",\"authors\":\"Veda C. Storey ,&nbsp;Jeffrey Parsons ,&nbsp;Arturo Castellanos Bueso ,&nbsp;Monica Chiarini Tremblay ,&nbsp;Roman Lukyanenko ,&nbsp;Alfred Castillo ,&nbsp;Wolfgang Maaß\",\"doi\":\"10.1016/j.datak.2025.102482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine learning enables the extraction of useful information from large, diverse datasets. However, despite many successful applications, machine learning continues to suffer from performance and transparency issues. These challenges can be partially attributed to the limited use of domain knowledge by machine learning models. This research proposes using the domain knowledge represented in conceptual models to improve the preparation of the data used to train machine learning models. We develop and demonstrate a method, called the <em>Conceptual Modeling for Machine Learning (CMML)</em>, which is comprised of guidelines for data preparation in machine learning and based on conceptual modeling constructs and principles. To assess the impact of CMML on machine learning outcomes, we first applied it to two real-world problems to evaluate its impact on model performance. We then solicited an assessment by data scientists on the applicability of the method. These results demonstrate the value of CMML for improving machine learning outcomes.</div></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"160 \",\"pages\":\"Article 102482\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X25000771\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X25000771","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

机器学习可以从大量不同的数据集中提取有用的信息。然而,尽管有许多成功的应用,机器学习仍然受到性能和透明度问题的困扰。这些挑战可以部分归因于机器学习模型对领域知识的有限使用。本研究建议使用概念模型中表示的领域知识来改进用于训练机器学习模型的数据准备。我们开发并演示了一种称为机器学习概念建模(CMML)的方法,该方法由机器学习中的数据准备指南组成,并基于概念建模构造和原则。为了评估cml对机器学习结果的影响,我们首先将其应用于两个现实世界的问题,以评估其对模型性能的影响。然后,我们请数据科学家对该方法的适用性进行评估。这些结果证明了cml在改善机器学习结果方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain knowledge in artificial intelligence: Using conceptual modeling to increase machine learning accuracy and explainability
Machine learning enables the extraction of useful information from large, diverse datasets. However, despite many successful applications, machine learning continues to suffer from performance and transparency issues. These challenges can be partially attributed to the limited use of domain knowledge by machine learning models. This research proposes using the domain knowledge represented in conceptual models to improve the preparation of the data used to train machine learning models. We develop and demonstrate a method, called the Conceptual Modeling for Machine Learning (CMML), which is comprised of guidelines for data preparation in machine learning and based on conceptual modeling constructs and principles. To assess the impact of CMML on machine learning outcomes, we first applied it to two real-world problems to evaluate its impact on model performance. We then solicited an assessment by data scientists on the applicability of the method. These results demonstrate the value of CMML for improving machine learning outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信