古代渐近圆柱流的谱量化

IF 1.5 1区 数学 Q1 MATHEMATICS
Wenkui Du, Jingze Zhu
{"title":"古代渐近圆柱流的谱量化","authors":"Wenkui Du,&nbsp;Jingze Zhu","doi":"10.1016/j.aim.2025.110422","DOIUrl":null,"url":null,"abstract":"<div><div>We study ancient mean curvature flows in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> whose tangent flow at −∞ is a shrinking cylinder <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msup><mo>(</mo><msqrt><mrow><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>|</mo><mi>t</mi><mo>|</mo></mrow></msqrt><mo>)</mo></math></span>, where <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. We prove that the cylindrical profile function <em>u</em> of these flows have the asymptotics <span><math><mi>u</mi><mo>(</mo><mi>y</mi><mo>,</mo><mi>ω</mi><mo>,</mo><mi>τ</mi><mo>)</mo><mo>=</mo><mo>(</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>⊤</mo></mrow></msup><mi>Q</mi><mi>y</mi><mo>−</mo><mn>2</mn><mtext>tr</mtext><mo>(</mo><mi>Q</mi><mo>)</mo><mo>)</mo><mo>/</mo><mo>|</mo><mi>τ</mi><mo>|</mo><mo>+</mo><mi>o</mi><mo>(</mo><mo>|</mo><mi>τ</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> as <span><math><mi>τ</mi><mo>→</mo><mo>−</mo><mo>∞</mo></math></span>, where the cylindrical matrix <em>Q</em> is a constant symmetric <span><math><mi>k</mi><mo>×</mo><mi>k</mi></math></span> matrix whose eigenvalues are quantized to be either 0 or <span><math><mo>−</mo><mfrac><mrow><msqrt><mrow><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>. Compared with the bubble-sheet quantization theorem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> obtained by Haslhofer and the first author, this theorem has full generality in the sense of removing noncollapsing condition and being valid for all dimensions. In addition, we establish symmetry improvement theorem which generalizes the corresponding results of Brendle-Choi and the second author to all dimensions. Finally, we give some geometric applications of the two theorems. In particular, we obtain the asymptotics, compactness and <span><math><mtext>O</mtext><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> symmetry of <em>k</em>-ovals in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> which are ancient noncollapsed flows in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> satisfying full rank condition that <span><math><mtext>rk</mtext><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mi>k</mi></math></span>, and we also obtain the classification of ancient noncollapsed flows in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> satisfying vanishing rank condition that <span><math><mtext>rk</mtext><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110422"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral quantization for ancient asymptotically cylindrical flows\",\"authors\":\"Wenkui Du,&nbsp;Jingze Zhu\",\"doi\":\"10.1016/j.aim.2025.110422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study ancient mean curvature flows in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> whose tangent flow at −∞ is a shrinking cylinder <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msup><mo>(</mo><msqrt><mrow><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>|</mo><mi>t</mi><mo>|</mo></mrow></msqrt><mo>)</mo></math></span>, where <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. We prove that the cylindrical profile function <em>u</em> of these flows have the asymptotics <span><math><mi>u</mi><mo>(</mo><mi>y</mi><mo>,</mo><mi>ω</mi><mo>,</mo><mi>τ</mi><mo>)</mo><mo>=</mo><mo>(</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>⊤</mo></mrow></msup><mi>Q</mi><mi>y</mi><mo>−</mo><mn>2</mn><mtext>tr</mtext><mo>(</mo><mi>Q</mi><mo>)</mo><mo>)</mo><mo>/</mo><mo>|</mo><mi>τ</mi><mo>|</mo><mo>+</mo><mi>o</mi><mo>(</mo><mo>|</mo><mi>τ</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> as <span><math><mi>τ</mi><mo>→</mo><mo>−</mo><mo>∞</mo></math></span>, where the cylindrical matrix <em>Q</em> is a constant symmetric <span><math><mi>k</mi><mo>×</mo><mi>k</mi></math></span> matrix whose eigenvalues are quantized to be either 0 or <span><math><mo>−</mo><mfrac><mrow><msqrt><mrow><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>. Compared with the bubble-sheet quantization theorem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> obtained by Haslhofer and the first author, this theorem has full generality in the sense of removing noncollapsing condition and being valid for all dimensions. In addition, we establish symmetry improvement theorem which generalizes the corresponding results of Brendle-Choi and the second author to all dimensions. Finally, we give some geometric applications of the two theorems. In particular, we obtain the asymptotics, compactness and <span><math><mtext>O</mtext><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> symmetry of <em>k</em>-ovals in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> which are ancient noncollapsed flows in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> satisfying full rank condition that <span><math><mtext>rk</mtext><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mi>k</mi></math></span>, and we also obtain the classification of ancient noncollapsed flows in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> satisfying vanishing rank condition that <span><math><mtext>rk</mtext><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"479 \",\"pages\":\"Article 110422\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003202\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003202","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了Rn+1中的古代平均曲率流,其在−∞处的切线流是一个收缩的圆柱体Rk×Sn−k(2(n−k)|t|),其中1≤k≤n−1。我们证明了这些流的柱形轮廓函数u具有渐近性u(y,ω,τ)=(y∞,Qy−2tr(Q))/|τ|+o(|τ|−1)为τ→−∞,其中柱形矩阵Q是一个常对称k×k矩阵,其特征值被量化为0或- 2(n−k)4。与Haslhofer和第一作者在R4中得到的泡片量化定理相比,该定理在去掉非坍缩条件和对所有维度都有效的意义上具有充分的普遍性。此外,我们还建立了对称改进定理,将Brendle-Choi和第二作者的相应结果推广到所有维度。最后,给出了这两个定理的一些几何应用。特别地,我们得到了Rn+1中满足rk(Q)=k的满秩条件的古代非坍缩流的k-oval的渐近性、紧性和O(n−k+1)对称性,并得到了Rn+1中满足rk(Q)=0的消失秩条件的古代非坍缩流的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral quantization for ancient asymptotically cylindrical flows
We study ancient mean curvature flows in Rn+1 whose tangent flow at −∞ is a shrinking cylinder Rk×Snk(2(nk)|t|), where 1kn1. We prove that the cylindrical profile function u of these flows have the asymptotics u(y,ω,τ)=(yQy2tr(Q))/|τ|+o(|τ|1) as τ, where the cylindrical matrix Q is a constant symmetric k×k matrix whose eigenvalues are quantized to be either 0 or 2(nk)4. Compared with the bubble-sheet quantization theorem in R4 obtained by Haslhofer and the first author, this theorem has full generality in the sense of removing noncollapsing condition and being valid for all dimensions. In addition, we establish symmetry improvement theorem which generalizes the corresponding results of Brendle-Choi and the second author to all dimensions. Finally, we give some geometric applications of the two theorems. In particular, we obtain the asymptotics, compactness and O(nk+1) symmetry of k-ovals in Rn+1 which are ancient noncollapsed flows in Rn+1 satisfying full rank condition that rk(Q)=k, and we also obtain the classification of ancient noncollapsed flows in Rn+1 satisfying vanishing rank condition that rk(Q)=0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信