{"title":"古代渐近圆柱流的谱量化","authors":"Wenkui Du, Jingze Zhu","doi":"10.1016/j.aim.2025.110422","DOIUrl":null,"url":null,"abstract":"<div><div>We study ancient mean curvature flows in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> whose tangent flow at −∞ is a shrinking cylinder <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msup><mo>(</mo><msqrt><mrow><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>|</mo><mi>t</mi><mo>|</mo></mrow></msqrt><mo>)</mo></math></span>, where <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. We prove that the cylindrical profile function <em>u</em> of these flows have the asymptotics <span><math><mi>u</mi><mo>(</mo><mi>y</mi><mo>,</mo><mi>ω</mi><mo>,</mo><mi>τ</mi><mo>)</mo><mo>=</mo><mo>(</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>⊤</mo></mrow></msup><mi>Q</mi><mi>y</mi><mo>−</mo><mn>2</mn><mtext>tr</mtext><mo>(</mo><mi>Q</mi><mo>)</mo><mo>)</mo><mo>/</mo><mo>|</mo><mi>τ</mi><mo>|</mo><mo>+</mo><mi>o</mi><mo>(</mo><mo>|</mo><mi>τ</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> as <span><math><mi>τ</mi><mo>→</mo><mo>−</mo><mo>∞</mo></math></span>, where the cylindrical matrix <em>Q</em> is a constant symmetric <span><math><mi>k</mi><mo>×</mo><mi>k</mi></math></span> matrix whose eigenvalues are quantized to be either 0 or <span><math><mo>−</mo><mfrac><mrow><msqrt><mrow><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>. Compared with the bubble-sheet quantization theorem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> obtained by Haslhofer and the first author, this theorem has full generality in the sense of removing noncollapsing condition and being valid for all dimensions. In addition, we establish symmetry improvement theorem which generalizes the corresponding results of Brendle-Choi and the second author to all dimensions. Finally, we give some geometric applications of the two theorems. In particular, we obtain the asymptotics, compactness and <span><math><mtext>O</mtext><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> symmetry of <em>k</em>-ovals in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> which are ancient noncollapsed flows in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> satisfying full rank condition that <span><math><mtext>rk</mtext><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mi>k</mi></math></span>, and we also obtain the classification of ancient noncollapsed flows in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> satisfying vanishing rank condition that <span><math><mtext>rk</mtext><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110422"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral quantization for ancient asymptotically cylindrical flows\",\"authors\":\"Wenkui Du, Jingze Zhu\",\"doi\":\"10.1016/j.aim.2025.110422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study ancient mean curvature flows in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> whose tangent flow at −∞ is a shrinking cylinder <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msup><mo>(</mo><msqrt><mrow><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>|</mo><mi>t</mi><mo>|</mo></mrow></msqrt><mo>)</mo></math></span>, where <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. We prove that the cylindrical profile function <em>u</em> of these flows have the asymptotics <span><math><mi>u</mi><mo>(</mo><mi>y</mi><mo>,</mo><mi>ω</mi><mo>,</mo><mi>τ</mi><mo>)</mo><mo>=</mo><mo>(</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>⊤</mo></mrow></msup><mi>Q</mi><mi>y</mi><mo>−</mo><mn>2</mn><mtext>tr</mtext><mo>(</mo><mi>Q</mi><mo>)</mo><mo>)</mo><mo>/</mo><mo>|</mo><mi>τ</mi><mo>|</mo><mo>+</mo><mi>o</mi><mo>(</mo><mo>|</mo><mi>τ</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> as <span><math><mi>τ</mi><mo>→</mo><mo>−</mo><mo>∞</mo></math></span>, where the cylindrical matrix <em>Q</em> is a constant symmetric <span><math><mi>k</mi><mo>×</mo><mi>k</mi></math></span> matrix whose eigenvalues are quantized to be either 0 or <span><math><mo>−</mo><mfrac><mrow><msqrt><mrow><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>. Compared with the bubble-sheet quantization theorem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> obtained by Haslhofer and the first author, this theorem has full generality in the sense of removing noncollapsing condition and being valid for all dimensions. In addition, we establish symmetry improvement theorem which generalizes the corresponding results of Brendle-Choi and the second author to all dimensions. Finally, we give some geometric applications of the two theorems. In particular, we obtain the asymptotics, compactness and <span><math><mtext>O</mtext><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> symmetry of <em>k</em>-ovals in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> which are ancient noncollapsed flows in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> satisfying full rank condition that <span><math><mtext>rk</mtext><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mi>k</mi></math></span>, and we also obtain the classification of ancient noncollapsed flows in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> satisfying vanishing rank condition that <span><math><mtext>rk</mtext><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"479 \",\"pages\":\"Article 110422\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003202\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003202","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Spectral quantization for ancient asymptotically cylindrical flows
We study ancient mean curvature flows in whose tangent flow at −∞ is a shrinking cylinder , where . We prove that the cylindrical profile function u of these flows have the asymptotics as , where the cylindrical matrix Q is a constant symmetric matrix whose eigenvalues are quantized to be either 0 or . Compared with the bubble-sheet quantization theorem in obtained by Haslhofer and the first author, this theorem has full generality in the sense of removing noncollapsing condition and being valid for all dimensions. In addition, we establish symmetry improvement theorem which generalizes the corresponding results of Brendle-Choi and the second author to all dimensions. Finally, we give some geometric applications of the two theorems. In particular, we obtain the asymptotics, compactness and symmetry of k-ovals in which are ancient noncollapsed flows in satisfying full rank condition that , and we also obtain the classification of ancient noncollapsed flows in satisfying vanishing rank condition that .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.