点缺陷和等效元素掺杂对ZnO单层膜光电催化性能影响的理论计算研究(0 0 1)

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hailan Li , Qingyu Hou , Yulan Gu , Zhenchao Xu , Wen Ma
{"title":"点缺陷和等效元素掺杂对ZnO单层膜光电催化性能影响的理论计算研究(0 0 1)","authors":"Hailan Li ,&nbsp;Qingyu Hou ,&nbsp;Yulan Gu ,&nbsp;Zhenchao Xu ,&nbsp;Wen Ma","doi":"10.1016/j.commatsci.2025.114061","DOIUrl":null,"url":null,"abstract":"<div><div>Under vacuum conditions, the preparation of ZnO systems via atmospheric pressure plasma often results in the inevitable presence of extrinsic H interstitials. Previous studies have neglected the coexistence of oxygen vacancies and H interstitials, and the manipulation of point defects in physical experiments is challenging. This study utilizes the first-principles GGA + U approach to systematically analyze how the co-existence of oxygen vacancies and hydrogen interstitials affects photocatalytic properties. The investigation focuses on two series of (0 0 1)-oriented monolayers: Zn<sub>36</sub>TO<sub>34</sub> and Zn<sub>36</sub>H<sub>i</sub>TO<sub>34</sub>, where T represents chalcogen elements (S, Se, Te). Among all systems, the Zn<sub>36</sub>H<sub>i</sub>TeO<sub>3</sub> (0 0 1) monolayer demonstrates optimal performance. This material exhibits enhanced stability under zinc-rich conditions, along with favorable formation energy and high catalytic activity. Its superior characteristics include extended light absorption range, appropriate work function, prolonged carrier lifetime, and exceptional photocatalytic reduction capacity. Notably, the Zn<sub>36</sub>H<sub>i</sub>TeO<sub>3</sub> (0 0 1) system displays dual functional advantages: relatively low internal voltage and excellent electrocatalytic performance. These findings establish fundamental theoretical principles for designing advanced ZnO-based materials in both photocatalytic and electrocatalytic applications.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"258 ","pages":"Article 114061"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical computational study of the effect of point defects and equivalent elemental doping on the photoelectrocatalytic properties of ZnO monolayers (0 0 1)\",\"authors\":\"Hailan Li ,&nbsp;Qingyu Hou ,&nbsp;Yulan Gu ,&nbsp;Zhenchao Xu ,&nbsp;Wen Ma\",\"doi\":\"10.1016/j.commatsci.2025.114061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Under vacuum conditions, the preparation of ZnO systems via atmospheric pressure plasma often results in the inevitable presence of extrinsic H interstitials. Previous studies have neglected the coexistence of oxygen vacancies and H interstitials, and the manipulation of point defects in physical experiments is challenging. This study utilizes the first-principles GGA + U approach to systematically analyze how the co-existence of oxygen vacancies and hydrogen interstitials affects photocatalytic properties. The investigation focuses on two series of (0 0 1)-oriented monolayers: Zn<sub>36</sub>TO<sub>34</sub> and Zn<sub>36</sub>H<sub>i</sub>TO<sub>34</sub>, where T represents chalcogen elements (S, Se, Te). Among all systems, the Zn<sub>36</sub>H<sub>i</sub>TeO<sub>3</sub> (0 0 1) monolayer demonstrates optimal performance. This material exhibits enhanced stability under zinc-rich conditions, along with favorable formation energy and high catalytic activity. Its superior characteristics include extended light absorption range, appropriate work function, prolonged carrier lifetime, and exceptional photocatalytic reduction capacity. Notably, the Zn<sub>36</sub>H<sub>i</sub>TeO<sub>3</sub> (0 0 1) system displays dual functional advantages: relatively low internal voltage and excellent electrocatalytic performance. These findings establish fundamental theoretical principles for designing advanced ZnO-based materials in both photocatalytic and electrocatalytic applications.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"258 \",\"pages\":\"Article 114061\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025625004045\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625004045","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在真空条件下,通过常压等离子体制备ZnO体系往往会不可避免地导致外在H间隙的存在。以往的研究忽略了氧空位和氢间隙的共存,物理实验中对点缺陷的处理具有挑战性。本研究利用第一性原理GGA + U方法系统分析了氧空位和氢间隙共存对光催化性能的影响。研究重点是两个系列(0 0 1)取向单层:Zn36TO34和Zn36HiTO34,其中T代表硫元素(S, Se, Te)。在所有系统中,Zn36HiTeO3(0 0 1)单层表现出最佳性能。该材料在富锌条件下稳定性增强,具有良好的生成能和较高的催化活性。其优越的特性包括扩展的光吸收范围,适当的工作功能,延长的载流子寿命,以及卓越的光催化还原能力。值得注意的是,Zn36HiTeO3(0 0 1)体系具有双重功能优势:相对较低的内部电压和优异的电催化性能。这些发现为设计先进的zno基材料在光催化和电催化中的应用奠定了基本的理论原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical computational study of the effect of point defects and equivalent elemental doping on the photoelectrocatalytic properties of ZnO monolayers (0 0 1)

Theoretical computational study of the effect of point defects and equivalent elemental doping on the photoelectrocatalytic properties of ZnO monolayers (0 0 1)
Under vacuum conditions, the preparation of ZnO systems via atmospheric pressure plasma often results in the inevitable presence of extrinsic H interstitials. Previous studies have neglected the coexistence of oxygen vacancies and H interstitials, and the manipulation of point defects in physical experiments is challenging. This study utilizes the first-principles GGA + U approach to systematically analyze how the co-existence of oxygen vacancies and hydrogen interstitials affects photocatalytic properties. The investigation focuses on two series of (0 0 1)-oriented monolayers: Zn36TO34 and Zn36HiTO34, where T represents chalcogen elements (S, Se, Te). Among all systems, the Zn36HiTeO3 (0 0 1) monolayer demonstrates optimal performance. This material exhibits enhanced stability under zinc-rich conditions, along with favorable formation energy and high catalytic activity. Its superior characteristics include extended light absorption range, appropriate work function, prolonged carrier lifetime, and exceptional photocatalytic reduction capacity. Notably, the Zn36HiTeO3 (0 0 1) system displays dual functional advantages: relatively low internal voltage and excellent electrocatalytic performance. These findings establish fundamental theoretical principles for designing advanced ZnO-based materials in both photocatalytic and electrocatalytic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信