Adele Therias , Azarakhsh Rafiee , Stef Lhermitte , Philip van der Lugt , Roderik Lindenbergh
{"title":"整合雷达和多光谱数据来检测可可作物:一种深度学习方法","authors":"Adele Therias , Azarakhsh Rafiee , Stef Lhermitte , Philip van der Lugt , Roderik Lindenbergh","doi":"10.1016/j.rsase.2025.101652","DOIUrl":null,"url":null,"abstract":"<div><div>The production of cocoa beans contributes to 7.5 % of European Union (EU) driven deforestation. As a result, the recent European Union Deforestation-free Regulation (EUDR) mandates producers to track cocoa farm extents comprehensively. While Remote Sensing has enormous capacity in dynamic crop monitoring, cocoa crop detection shows challenges due to cocoa complex canopy structure, spectral similarity to forest, variable farming methods, and location in frequently cloudy regions. Previous research on cocoa crop detection has mainly focused on pixel-based classification, disregarding spatial context. In this research we have performed a semantic segmentation approach to incorporate spatial configuration and enhance cocoa crop detection. We have applied Convolutional Neural Network (CNN) for the to semantic segmentation of cocoa parcels, considering both spectral and spatial characteristics. Additionally, we have evaluated the impact of combining Synthetic Aperture RADAR (SAR) and MSI (Multi-Spectral Imagery) data in the training of a CNN to demonstrate the importance of texture, moisture, and canopy characteristics in identifying cocoa canopies. The impact of MSI dataset stack with different SAR polarizations, seasons and temporality has been evaluated. The methodology is tested on Sentinel 1 and 2 data over an area of 100 × 100 km in Ghana for which an extensive ground truth data set of almost 90,000 polygons was available for training and validation. The results show that the addition of single-day and temporal SAR to a single-day MSI image can improve the predictions, reaching an F1 score of 86.62 %. This research demonstrates the influence of SAR measurements, seasons, polarization, and ground truth classes on the semantic segmentation of cocoa.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"39 ","pages":"Article 101652"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating radar and multi-spectral data to detect cocoa crops: a deep learning approach\",\"authors\":\"Adele Therias , Azarakhsh Rafiee , Stef Lhermitte , Philip van der Lugt , Roderik Lindenbergh\",\"doi\":\"10.1016/j.rsase.2025.101652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The production of cocoa beans contributes to 7.5 % of European Union (EU) driven deforestation. As a result, the recent European Union Deforestation-free Regulation (EUDR) mandates producers to track cocoa farm extents comprehensively. While Remote Sensing has enormous capacity in dynamic crop monitoring, cocoa crop detection shows challenges due to cocoa complex canopy structure, spectral similarity to forest, variable farming methods, and location in frequently cloudy regions. Previous research on cocoa crop detection has mainly focused on pixel-based classification, disregarding spatial context. In this research we have performed a semantic segmentation approach to incorporate spatial configuration and enhance cocoa crop detection. We have applied Convolutional Neural Network (CNN) for the to semantic segmentation of cocoa parcels, considering both spectral and spatial characteristics. Additionally, we have evaluated the impact of combining Synthetic Aperture RADAR (SAR) and MSI (Multi-Spectral Imagery) data in the training of a CNN to demonstrate the importance of texture, moisture, and canopy characteristics in identifying cocoa canopies. The impact of MSI dataset stack with different SAR polarizations, seasons and temporality has been evaluated. The methodology is tested on Sentinel 1 and 2 data over an area of 100 × 100 km in Ghana for which an extensive ground truth data set of almost 90,000 polygons was available for training and validation. The results show that the addition of single-day and temporal SAR to a single-day MSI image can improve the predictions, reaching an F1 score of 86.62 %. This research demonstrates the influence of SAR measurements, seasons, polarization, and ground truth classes on the semantic segmentation of cocoa.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"39 \",\"pages\":\"Article 101652\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938525002058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938525002058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Integrating radar and multi-spectral data to detect cocoa crops: a deep learning approach
The production of cocoa beans contributes to 7.5 % of European Union (EU) driven deforestation. As a result, the recent European Union Deforestation-free Regulation (EUDR) mandates producers to track cocoa farm extents comprehensively. While Remote Sensing has enormous capacity in dynamic crop monitoring, cocoa crop detection shows challenges due to cocoa complex canopy structure, spectral similarity to forest, variable farming methods, and location in frequently cloudy regions. Previous research on cocoa crop detection has mainly focused on pixel-based classification, disregarding spatial context. In this research we have performed a semantic segmentation approach to incorporate spatial configuration and enhance cocoa crop detection. We have applied Convolutional Neural Network (CNN) for the to semantic segmentation of cocoa parcels, considering both spectral and spatial characteristics. Additionally, we have evaluated the impact of combining Synthetic Aperture RADAR (SAR) and MSI (Multi-Spectral Imagery) data in the training of a CNN to demonstrate the importance of texture, moisture, and canopy characteristics in identifying cocoa canopies. The impact of MSI dataset stack with different SAR polarizations, seasons and temporality has been evaluated. The methodology is tested on Sentinel 1 and 2 data over an area of 100 × 100 km in Ghana for which an extensive ground truth data set of almost 90,000 polygons was available for training and validation. The results show that the addition of single-day and temporal SAR to a single-day MSI image can improve the predictions, reaching an F1 score of 86.62 %. This research demonstrates the influence of SAR measurements, seasons, polarization, and ground truth classes on the semantic segmentation of cocoa.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems