{"title":"通过多视角对比学习改进药物-靶标相互作用预测","authors":"Zhirui Liao , Lei Xie , Shanfeng Zhu","doi":"10.1016/j.artmed.2025.103195","DOIUrl":null,"url":null,"abstract":"<div><div>Drug–target interaction (DTI) identification is one of the crucial issues in the field of drug discovery. Machine learning approaches offer efficient ways to address this issue, reducing expensive and time-consuming laboratory experiments. However, the scarcity of annotated drug data with labels restricts supervised machine learning applications to DTI prediction. Drawing inspiration from recent advances in contrastive learning, we present ContraDTI—a novel framework that adopts multi-view contrastive learning to overcome data limitations in this paper. Our model considers the molecular graph of a drug as the main view and the SMILES string of a drug as the side view, employing two types of loss functions for the contrast of the main view and the cross-view alignment between the main and the side views. Extensive experiments on both single-target and multi-target DTI datasets demonstrate that ContraDTI enhances the classification performance of DTI prediction, particularly when labeled data is scarce. ContraDTI can be a powerful tool for DTI prediction in data-limited scenarios. The code of this paper is available at <span><span>https://github.com/zhiruiliao/ContraDTI</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":55458,"journal":{"name":"Artificial Intelligence in Medicine","volume":"168 ","pages":"Article 103195"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ContraDTI: Improved drug–target interaction prediction via multi-view contrastive learning\",\"authors\":\"Zhirui Liao , Lei Xie , Shanfeng Zhu\",\"doi\":\"10.1016/j.artmed.2025.103195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drug–target interaction (DTI) identification is one of the crucial issues in the field of drug discovery. Machine learning approaches offer efficient ways to address this issue, reducing expensive and time-consuming laboratory experiments. However, the scarcity of annotated drug data with labels restricts supervised machine learning applications to DTI prediction. Drawing inspiration from recent advances in contrastive learning, we present ContraDTI—a novel framework that adopts multi-view contrastive learning to overcome data limitations in this paper. Our model considers the molecular graph of a drug as the main view and the SMILES string of a drug as the side view, employing two types of loss functions for the contrast of the main view and the cross-view alignment between the main and the side views. Extensive experiments on both single-target and multi-target DTI datasets demonstrate that ContraDTI enhances the classification performance of DTI prediction, particularly when labeled data is scarce. ContraDTI can be a powerful tool for DTI prediction in data-limited scenarios. The code of this paper is available at <span><span>https://github.com/zhiruiliao/ContraDTI</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":55458,\"journal\":{\"name\":\"Artificial Intelligence in Medicine\",\"volume\":\"168 \",\"pages\":\"Article 103195\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0933365725001307\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0933365725001307","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
ContraDTI: Improved drug–target interaction prediction via multi-view contrastive learning
Drug–target interaction (DTI) identification is one of the crucial issues in the field of drug discovery. Machine learning approaches offer efficient ways to address this issue, reducing expensive and time-consuming laboratory experiments. However, the scarcity of annotated drug data with labels restricts supervised machine learning applications to DTI prediction. Drawing inspiration from recent advances in contrastive learning, we present ContraDTI—a novel framework that adopts multi-view contrastive learning to overcome data limitations in this paper. Our model considers the molecular graph of a drug as the main view and the SMILES string of a drug as the side view, employing two types of loss functions for the contrast of the main view and the cross-view alignment between the main and the side views. Extensive experiments on both single-target and multi-target DTI datasets demonstrate that ContraDTI enhances the classification performance of DTI prediction, particularly when labeled data is scarce. ContraDTI can be a powerful tool for DTI prediction in data-limited scenarios. The code of this paper is available at https://github.com/zhiruiliao/ContraDTI.
期刊介绍:
Artificial Intelligence in Medicine publishes original articles from a wide variety of interdisciplinary perspectives concerning the theory and practice of artificial intelligence (AI) in medicine, medically-oriented human biology, and health care.
Artificial intelligence in medicine may be characterized as the scientific discipline pertaining to research studies, projects, and applications that aim at supporting decision-based medical tasks through knowledge- and/or data-intensive computer-based solutions that ultimately support and improve the performance of a human care provider.