他们说的是谁的道德?揭示多语言模型中的文化偏见

Meltem Aksoy
{"title":"他们说的是谁的道德?揭示多语言模型中的文化偏见","authors":"Meltem Aksoy","doi":"10.1016/j.nlp.2025.100172","DOIUrl":null,"url":null,"abstract":"<div><div>Large language models (LLMs) have become integral tools in diverse domains, yet their moral reasoning capabilities across cultural and linguistic contexts remain underexplored. This study investigates whether multilingual LLMs, such as GPT-3.5-Turbo, GPT-4o-mini, Llama 3.1, and MistralNeMo, reflect culturally specific moral values or impose dominant moral norms, particularly those rooted in English. Using the updated Moral Foundations Questionnaire (MFQ-2) in eight languages, Arabic, Farsi, English, Spanish, Japanese, Chinese, French, and Russian, the study analyzes the models’ adherence to six core moral foundations: care, equality, proportionality, loyalty, authority, and purity. The results reveal significant cultural and linguistic variability, challenging the assumption of universal moral consistency in LLMs. Although some models demonstrate adaptability to diverse contexts, others exhibit biases influenced by the composition of the training data. These findings underscore the need for culturally inclusive model development to improve fairness and trust in multi-lingual AI systems.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"12 ","pages":"Article 100172"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whose morality do they speak? Unraveling cultural bias in multilingual language models\",\"authors\":\"Meltem Aksoy\",\"doi\":\"10.1016/j.nlp.2025.100172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large language models (LLMs) have become integral tools in diverse domains, yet their moral reasoning capabilities across cultural and linguistic contexts remain underexplored. This study investigates whether multilingual LLMs, such as GPT-3.5-Turbo, GPT-4o-mini, Llama 3.1, and MistralNeMo, reflect culturally specific moral values or impose dominant moral norms, particularly those rooted in English. Using the updated Moral Foundations Questionnaire (MFQ-2) in eight languages, Arabic, Farsi, English, Spanish, Japanese, Chinese, French, and Russian, the study analyzes the models’ adherence to six core moral foundations: care, equality, proportionality, loyalty, authority, and purity. The results reveal significant cultural and linguistic variability, challenging the assumption of universal moral consistency in LLMs. Although some models demonstrate adaptability to diverse contexts, others exhibit biases influenced by the composition of the training data. These findings underscore the need for culturally inclusive model development to improve fairness and trust in multi-lingual AI systems.</div></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"12 \",\"pages\":\"Article 100172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949719125000482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719125000482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)已成为各个领域不可或缺的工具,但其跨文化和语言背景的道德推理能力仍未得到充分探索。本研究调查了多语言法学硕士,如GPT-3.5-Turbo、gpt - 40 -mini、Llama 3.1和MistralNeMo,是否反映了文化上特定的道德价值观或强加了主导的道德规范,特别是那些植根于英语的道德规范。本研究使用更新后的道德基础问卷(MFQ-2),以阿拉伯语、波斯语、英语、西班牙语、日语、汉语、法语和俄语八种语言进行,分析了模特对六个核心道德基础的遵守情况:关怀、平等、比例、忠诚、权威和纯洁。结果显示了显著的文化和语言差异,挑战了法学硕士普遍道德一致性的假设。尽管一些模型显示出对不同环境的适应性,但其他模型受到训练数据组成的影响而表现出偏差。这些发现强调了文化包容性模型开发的必要性,以提高多语言人工智能系统的公平性和信任度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Whose morality do they speak? Unraveling cultural bias in multilingual language models
Large language models (LLMs) have become integral tools in diverse domains, yet their moral reasoning capabilities across cultural and linguistic contexts remain underexplored. This study investigates whether multilingual LLMs, such as GPT-3.5-Turbo, GPT-4o-mini, Llama 3.1, and MistralNeMo, reflect culturally specific moral values or impose dominant moral norms, particularly those rooted in English. Using the updated Moral Foundations Questionnaire (MFQ-2) in eight languages, Arabic, Farsi, English, Spanish, Japanese, Chinese, French, and Russian, the study analyzes the models’ adherence to six core moral foundations: care, equality, proportionality, loyalty, authority, and purity. The results reveal significant cultural and linguistic variability, challenging the assumption of universal moral consistency in LLMs. Although some models demonstrate adaptability to diverse contexts, others exhibit biases influenced by the composition of the training data. These findings underscore the need for culturally inclusive model development to improve fairness and trust in multi-lingual AI systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信