nnWeb:通过自动协作卸载实现基于webgpu的高效DNN推理

IF 4.6 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jiawei Liu , Bing Dong , Weilong Wang , Muhan Yuan , Borui Li , Zhao-Dong Xu , Shuai Wang
{"title":"nnWeb:通过自动协作卸载实现基于webgpu的高效DNN推理","authors":"Jiawei Liu ,&nbsp;Bing Dong ,&nbsp;Weilong Wang ,&nbsp;Muhan Yuan ,&nbsp;Borui Li ,&nbsp;Zhao-Dong Xu ,&nbsp;Shuai Wang","doi":"10.1016/j.comnet.2025.111489","DOIUrl":null,"url":null,"abstract":"<div><div>In-browser neural network inference offers the promise of cross-platform AI applications, but faces severe latency and energy challenges on resource-constrained devices. In this paper, we present nnWeb, a WebGPU-based in-browser neural network inference framework with optimized latency and energy efficiency. nnWeb dynamically partitions neural network and facilitates the collaborative offloading between client browser and server. nnWeb operates in two phases: (1) <em>layer-wise isolation-based profiling</em>, which is used to predict per-layer execution latency and energy on heterogeneous hardware; and (2) <em>asynchronous execution-based DNN partitioning,</em> which continuously monitors network bandwidth and device load to select the optimal partition point using WebGPU’s native pipeline parallelism, minimizing total latency or energy consumption by solving a closed-form optimization at runtime. Extensive evaluation on various in-browser AI models and networking conditions shows that nnWeb achieves an average reduction of 30% to 52% in total inference latency compared with static partitioning. Moreover, nnWeb realizes energy savings ranging from 11.3% to 44.0% in contrast to standalone browser inference.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"270 ","pages":"Article 111489"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"nnWeb: Towards efficient WebGPU-based DNN inference via automatic collaborative offloading\",\"authors\":\"Jiawei Liu ,&nbsp;Bing Dong ,&nbsp;Weilong Wang ,&nbsp;Muhan Yuan ,&nbsp;Borui Li ,&nbsp;Zhao-Dong Xu ,&nbsp;Shuai Wang\",\"doi\":\"10.1016/j.comnet.2025.111489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In-browser neural network inference offers the promise of cross-platform AI applications, but faces severe latency and energy challenges on resource-constrained devices. In this paper, we present nnWeb, a WebGPU-based in-browser neural network inference framework with optimized latency and energy efficiency. nnWeb dynamically partitions neural network and facilitates the collaborative offloading between client browser and server. nnWeb operates in two phases: (1) <em>layer-wise isolation-based profiling</em>, which is used to predict per-layer execution latency and energy on heterogeneous hardware; and (2) <em>asynchronous execution-based DNN partitioning,</em> which continuously monitors network bandwidth and device load to select the optimal partition point using WebGPU’s native pipeline parallelism, minimizing total latency or energy consumption by solving a closed-form optimization at runtime. Extensive evaluation on various in-browser AI models and networking conditions shows that nnWeb achieves an average reduction of 30% to 52% in total inference latency compared with static partitioning. Moreover, nnWeb realizes energy savings ranging from 11.3% to 44.0% in contrast to standalone browser inference.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"270 \",\"pages\":\"Article 111489\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128625004566\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625004566","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

浏览器内神经网络推理为跨平台人工智能应用提供了希望,但在资源受限的设备上面临严重的延迟和能源挑战。在本文中,我们提出了nnWeb,一个基于webgpu的浏览器内神经网络推理框架,具有优化的延迟和能量效率。nnWeb动态分区神经网络,促进客户端浏览器和服务器之间的协同卸载。nnWeb分两个阶段运行:(1)基于层的隔离分析,用于预测异构硬件上的每层执行延迟和能量;(2)基于异步执行的DNN分区,利用WebGPU的原生管道并行性,持续监控网络带宽和设备负载,选择最优的分区点,通过在运行时解决封闭形式的优化,将总延迟或能耗降至最低。对各种浏览器内AI模型和网络条件的广泛评估表明,与静态分区相比,nnWeb在总推理延迟方面平均减少了30%到52%。此外,与独立浏览器推断相比,nnWeb实现了11.3%到44.0%的节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
nnWeb: Towards efficient WebGPU-based DNN inference via automatic collaborative offloading
In-browser neural network inference offers the promise of cross-platform AI applications, but faces severe latency and energy challenges on resource-constrained devices. In this paper, we present nnWeb, a WebGPU-based in-browser neural network inference framework with optimized latency and energy efficiency. nnWeb dynamically partitions neural network and facilitates the collaborative offloading between client browser and server. nnWeb operates in two phases: (1) layer-wise isolation-based profiling, which is used to predict per-layer execution latency and energy on heterogeneous hardware; and (2) asynchronous execution-based DNN partitioning, which continuously monitors network bandwidth and device load to select the optimal partition point using WebGPU’s native pipeline parallelism, minimizing total latency or energy consumption by solving a closed-form optimization at runtime. Extensive evaluation on various in-browser AI models and networking conditions shows that nnWeb achieves an average reduction of 30% to 52% in total inference latency compared with static partitioning. Moreover, nnWeb realizes energy savings ranging from 11.3% to 44.0% in contrast to standalone browser inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信