奥尔利茨调和版的双混合卷

IF 0.7 4区 数学 Q3 MATHEMATICS
Chang-Jian Zhao
{"title":"奥尔利茨调和版的双混合卷","authors":"Chang-Jian Zhao","doi":"10.1016/j.difgeo.2025.102268","DOIUrl":null,"url":null,"abstract":"<div><div>In the paper, our main aim is to generalize the dual mixed harmonic quermassintegrals to Orlicz space. Under the framework of Orlicz dual Brunn-Minkowski theory, we introduce a new affine geometric quantity by calculating Orlicz first order variation of the dual mixed harmonic quermassintegrals, and call it the Orlicz dual mixed harmonic quermassintegrals. The fundamental notions and conclusions of the dual mixed harmonic quermassintegrals and the Minkowski and Brunn-Minkowski inequalities for the dual harmonic quermassintegrals are extended to an Orlicz setting, and the related concepts and inequalities of Orlicz dual mixed volumes are also included in our conclusions.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"100 ","pages":"Article 102268"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orlicz harmonic version of dual mixed volumes\",\"authors\":\"Chang-Jian Zhao\",\"doi\":\"10.1016/j.difgeo.2025.102268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the paper, our main aim is to generalize the dual mixed harmonic quermassintegrals to Orlicz space. Under the framework of Orlicz dual Brunn-Minkowski theory, we introduce a new affine geometric quantity by calculating Orlicz first order variation of the dual mixed harmonic quermassintegrals, and call it the Orlicz dual mixed harmonic quermassintegrals. The fundamental notions and conclusions of the dual mixed harmonic quermassintegrals and the Minkowski and Brunn-Minkowski inequalities for the dual harmonic quermassintegrals are extended to an Orlicz setting, and the related concepts and inequalities of Orlicz dual mixed volumes are also included in our conclusions.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"100 \",\"pages\":\"Article 102268\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224525000439\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000439","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是将对偶混合调和quermass积分推广到Orlicz空间。在Orlicz对偶Brunn-Minkowski理论的框架下,通过计算对偶混合调和quermass积分的Orlicz一阶变分,引入了一个新的仿射几何量,称为Orlicz对偶混合调和quermass积分。将对偶混合调和quermass积分的基本概念和结论以及对偶调和quermass积分的Minkowski不等式和Brunn-Minkowski不等式推广到一个Orlicz集合中,并将Orlicz对偶混合体积的相关概念和不等式也包含在我们的结论中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orlicz harmonic version of dual mixed volumes
In the paper, our main aim is to generalize the dual mixed harmonic quermassintegrals to Orlicz space. Under the framework of Orlicz dual Brunn-Minkowski theory, we introduce a new affine geometric quantity by calculating Orlicz first order variation of the dual mixed harmonic quermassintegrals, and call it the Orlicz dual mixed harmonic quermassintegrals. The fundamental notions and conclusions of the dual mixed harmonic quermassintegrals and the Minkowski and Brunn-Minkowski inequalities for the dual harmonic quermassintegrals are extended to an Orlicz setting, and the related concepts and inequalities of Orlicz dual mixed volumes are also included in our conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信