Yi Wang,Jinghua Liu,Sha Zhu,Shiliang Hu,Xiupeng Chen,Elisabet Mandon,Ngoc Tam Tran,Songbo Zhang,Yangran Qi,Hong Ma,Ran He,Yu Cao,Qin Su,Thomas L Gallagher,Zixiu Ii,Chan Zhou,Philip W L Tai,Guangping Gao,Jun Xie
{"title":"miR-375通过调控药物基因表达来预防对乙酰氨基酚诱导的急性肝衰竭。","authors":"Yi Wang,Jinghua Liu,Sha Zhu,Shiliang Hu,Xiupeng Chen,Elisabet Mandon,Ngoc Tam Tran,Songbo Zhang,Yangran Qi,Hong Ma,Ran He,Yu Cao,Qin Su,Thomas L Gallagher,Zixiu Ii,Chan Zhou,Philip W L Tai,Guangping Gao,Jun Xie","doi":"10.1016/j.ymthe.2025.06.038","DOIUrl":null,"url":null,"abstract":"Acetaminophen (APAP) overdose is a leading cause of acute liver failure (ALF), primarily through the excessive production of N-acetyl-p-benzoquinone imine (NAPQI). N-acetylcysteine (NAC) is the FDA-approved treatment for APAP overdose, but there is a growing interest in microRNAs as potential therapeutic agents. We delivered miR-375 ectopically via a liver-tropic adeno-associated virus serotype 8 (AAV8) and demonstrated its potent protection in a murine model of APAP overdose-induced ALF. Slc16a2, Cyb5b, and Acsl5 were identified as critical targets acting synergistically to mitigate toxicity. Liver transcriptome revealed that miR-375 overexpression or silencing of the targets of miR-375 increased Gstm3 expression in mice. AAV8-mediated Gstm3 expression protects against APAP-ALF, and the protection was further enhanced by disrupting the expression of Cyp2e1. Additionally, CYP2E1 and GSS, which contribute to APAP detoxification, were down- and upregulated by miR-375, respectively. These findings suggest that miR-375 prevents APAP-ALF by orchestrating the expression of pharmacogenes and enhancing glutathione synthesis. We conclude that miR-375 and its targets are promising therapeutic targets for APAP-ALF.","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":"467 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-375 protects against acetaminophen-induced acute liver failure by orchestrating pharmacogene expression.\",\"authors\":\"Yi Wang,Jinghua Liu,Sha Zhu,Shiliang Hu,Xiupeng Chen,Elisabet Mandon,Ngoc Tam Tran,Songbo Zhang,Yangran Qi,Hong Ma,Ran He,Yu Cao,Qin Su,Thomas L Gallagher,Zixiu Ii,Chan Zhou,Philip W L Tai,Guangping Gao,Jun Xie\",\"doi\":\"10.1016/j.ymthe.2025.06.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acetaminophen (APAP) overdose is a leading cause of acute liver failure (ALF), primarily through the excessive production of N-acetyl-p-benzoquinone imine (NAPQI). N-acetylcysteine (NAC) is the FDA-approved treatment for APAP overdose, but there is a growing interest in microRNAs as potential therapeutic agents. We delivered miR-375 ectopically via a liver-tropic adeno-associated virus serotype 8 (AAV8) and demonstrated its potent protection in a murine model of APAP overdose-induced ALF. Slc16a2, Cyb5b, and Acsl5 were identified as critical targets acting synergistically to mitigate toxicity. Liver transcriptome revealed that miR-375 overexpression or silencing of the targets of miR-375 increased Gstm3 expression in mice. AAV8-mediated Gstm3 expression protects against APAP-ALF, and the protection was further enhanced by disrupting the expression of Cyp2e1. Additionally, CYP2E1 and GSS, which contribute to APAP detoxification, were down- and upregulated by miR-375, respectively. These findings suggest that miR-375 prevents APAP-ALF by orchestrating the expression of pharmacogenes and enhancing glutathione synthesis. We conclude that miR-375 and its targets are promising therapeutic targets for APAP-ALF.\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\"467 1\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2025.06.038\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.06.038","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
miR-375 protects against acetaminophen-induced acute liver failure by orchestrating pharmacogene expression.
Acetaminophen (APAP) overdose is a leading cause of acute liver failure (ALF), primarily through the excessive production of N-acetyl-p-benzoquinone imine (NAPQI). N-acetylcysteine (NAC) is the FDA-approved treatment for APAP overdose, but there is a growing interest in microRNAs as potential therapeutic agents. We delivered miR-375 ectopically via a liver-tropic adeno-associated virus serotype 8 (AAV8) and demonstrated its potent protection in a murine model of APAP overdose-induced ALF. Slc16a2, Cyb5b, and Acsl5 were identified as critical targets acting synergistically to mitigate toxicity. Liver transcriptome revealed that miR-375 overexpression or silencing of the targets of miR-375 increased Gstm3 expression in mice. AAV8-mediated Gstm3 expression protects against APAP-ALF, and the protection was further enhanced by disrupting the expression of Cyp2e1. Additionally, CYP2E1 and GSS, which contribute to APAP detoxification, were down- and upregulated by miR-375, respectively. These findings suggest that miR-375 prevents APAP-ALF by orchestrating the expression of pharmacogenes and enhancing glutathione synthesis. We conclude that miR-375 and its targets are promising therapeutic targets for APAP-ALF.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.