对称性破缺通过π型相互作用实现富锂阴极的稳定氧氧化还原。

Fu-Da Yu, Zhe-Jian Yi, Hai-Nan Wang, Jia-Zhen Zhao, Yang-Qian Zhang, Yang Ren, Ji-Gang Zhou, Ji-Huai Wu, Zhang Lan, Yi-Ming Xie, Lan-Fang Que, Yun-Shan Jiang, Zhen-Bo Wang
{"title":"对称性破缺通过π型相互作用实现富锂阴极的稳定氧氧化还原。","authors":"Fu-Da Yu, Zhe-Jian Yi, Hai-Nan Wang, Jia-Zhen Zhao, Yang-Qian Zhang, Yang Ren, Ji-Gang Zhou, Ji-Huai Wu, Zhang Lan, Yi-Ming Xie, Lan-Fang Que, Yun-Shan Jiang, Zhen-Bo Wang","doi":"10.1002/anie.202506507","DOIUrl":null,"url":null,"abstract":"<p><p>Effectively stabilizing oxygen redox is the most challenging task for the practical applications of high-energy-density Li-rich cathode materials. However, how to accurately tune the oxygen energy level to achieve reversible redox remains puzzling so far. In this work, we achieve stable oxygen redox in layered Li-rich materials over the whole voltage range without irreversible O<sub>2</sub> release by adjusting the interlayer metal cation environment adjacent to the ligand. Combining synchrotron X-ray absorption spectroscopy and theoretical analysis of metal-ligand orbital combinations, we confirm the obvious charge transfer from O to Ni due to the π-type interaction between Ni 3d spin-down t<sub>2g</sub> orbitals and O 2p orbitals. Furthermore, Ab initio molecular dynamics simulations reveal the spontaneous symmetry breaking of the Ni coordination environment after Li extraction under the π-type interaction, which enhances the intrinsic competition between anion and cation oxidation, keeping π* state (from O 2p splitting) below the metal band to avoid over-oxidation. As a result, the modified material shows improved electrochemical performance and stable structural/interface evolution. This work provides new insights into the relationship between the adjacent metal environment and the ligand O redox reactions.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202506507"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry Breaking Enabled Stable Oxygen Redox in Li-Rich Cathodes via π-Type Interaction.\",\"authors\":\"Fu-Da Yu, Zhe-Jian Yi, Hai-Nan Wang, Jia-Zhen Zhao, Yang-Qian Zhang, Yang Ren, Ji-Gang Zhou, Ji-Huai Wu, Zhang Lan, Yi-Ming Xie, Lan-Fang Que, Yun-Shan Jiang, Zhen-Bo Wang\",\"doi\":\"10.1002/anie.202506507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effectively stabilizing oxygen redox is the most challenging task for the practical applications of high-energy-density Li-rich cathode materials. However, how to accurately tune the oxygen energy level to achieve reversible redox remains puzzling so far. In this work, we achieve stable oxygen redox in layered Li-rich materials over the whole voltage range without irreversible O<sub>2</sub> release by adjusting the interlayer metal cation environment adjacent to the ligand. Combining synchrotron X-ray absorption spectroscopy and theoretical analysis of metal-ligand orbital combinations, we confirm the obvious charge transfer from O to Ni due to the π-type interaction between Ni 3d spin-down t<sub>2g</sub> orbitals and O 2p orbitals. Furthermore, Ab initio molecular dynamics simulations reveal the spontaneous symmetry breaking of the Ni coordination environment after Li extraction under the π-type interaction, which enhances the intrinsic competition between anion and cation oxidation, keeping π* state (from O 2p splitting) below the metal band to avoid over-oxidation. As a result, the modified material shows improved electrochemical performance and stable structural/interface evolution. This work provides new insights into the relationship between the adjacent metal environment and the ligand O redox reactions.</p>\",\"PeriodicalId\":520556,\"journal\":{\"name\":\"Angewandte Chemie (International ed. in English)\",\"volume\":\" \",\"pages\":\"e202506507\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie (International ed. in English)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202506507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202506507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有效稳定氧氧化还原是高能量密度富锂正极材料实际应用中最具挑战性的任务。然而,如何准确地调节氧能级以实现可逆氧化还原至今仍是一个难题。在这项工作中,我们通过调节与配体相邻的层间金属阳离子环境,在整个电压范围内实现了层状富锂材料中稳定的氧氧化还原,而不发生不可逆的O2释放。结合同步加速器x射线吸收光谱和金属-配体轨道组合的理论分析,我们证实了由于Ni三维自旋下t2g轨道和o2p轨道之间的π型相互作用,O向Ni发生了明显的电荷转移。此外,从头算分子动力学模拟揭示了Li萃取后Ni配位环境在π型相互作用下的自发对称性破缺,增强了阴离子和阳离子氧化的内在竞争,使o2p态保持在金属能带以下,避免了过度氧化。结果表明,改性材料的电化学性能得到改善,结构/界面演化稳定。这项工作为相邻金属环境与配体O氧化还原反应之间的关系提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry Breaking Enabled Stable Oxygen Redox in Li-Rich Cathodes via π-Type Interaction.

Effectively stabilizing oxygen redox is the most challenging task for the practical applications of high-energy-density Li-rich cathode materials. However, how to accurately tune the oxygen energy level to achieve reversible redox remains puzzling so far. In this work, we achieve stable oxygen redox in layered Li-rich materials over the whole voltage range without irreversible O2 release by adjusting the interlayer metal cation environment adjacent to the ligand. Combining synchrotron X-ray absorption spectroscopy and theoretical analysis of metal-ligand orbital combinations, we confirm the obvious charge transfer from O to Ni due to the π-type interaction between Ni 3d spin-down t2g orbitals and O 2p orbitals. Furthermore, Ab initio molecular dynamics simulations reveal the spontaneous symmetry breaking of the Ni coordination environment after Li extraction under the π-type interaction, which enhances the intrinsic competition between anion and cation oxidation, keeping π* state (from O 2p splitting) below the metal band to avoid over-oxidation. As a result, the modified material shows improved electrochemical performance and stable structural/interface evolution. This work provides new insights into the relationship between the adjacent metal environment and the ligand O redox reactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信