EGR3缺失可拯救Kcna1缺失小鼠的发育性和癫痫性脑病。

Arindam Ghosh Mazumder, Saifina Karedia, Nandani Adhyapak, Catharina Schimer, John Samuel Bass, Jessica L Kamen, Miranda J Jankovic, Qinglong Miao, Amelia L Gallitano, Alexander B Saltzman, Antrix Jain, Anna Malovannaya, Edward Glasscock, Isamu Aiba, Jeffrey L Noebels, Vaishnav Krishnan
{"title":"EGR3缺失可拯救Kcna1缺失小鼠的发育性和癫痫性脑病。","authors":"Arindam Ghosh Mazumder, Saifina Karedia, Nandani Adhyapak, Catharina Schimer, John Samuel Bass, Jessica L Kamen, Miranda J Jankovic, Qinglong Miao, Amelia L Gallitano, Alexander B Saltzman, Antrix Jain, Anna Malovannaya, Edward Glasscock, Isamu Aiba, Jeffrey L Noebels, Vaishnav Krishnan","doi":"10.1101/2025.06.07.658422","DOIUrl":null,"url":null,"abstract":"<p><p><i>KCNA1</i> encodes the α-subunit of the voltage-gated potassium channel K <sub>V</sub> 1.1. Mutations in K <sub>V</sub> 1.1's pore domain result in developmental and epileptic encephalopathy (DEE), where early life seizures and a culprit lesion synergistically disrupt neurodevelopmental trajectories, resulting in intellectual disability that often presents with disturbances in sleep, sociability and sensory processing. Abnormalities in the subcellular localization of Kv1.1, via mutations in/autoantibodies against LGI1 and CNTNAP2, also give rise to syndromes of epilepsy and neuropsychiatric impairment. Mice with deletions of <i>Kcna1</i> <sup>(\"-/-\")</sup> display spontaneous seizures at 2-3 weeks of age and premature mortality. In this study, we applied instrumented home-cage monitoring to examine how aberrations in KCNA1 expression may result in pervasive alterations in spontaneous behavior. Compared to wildtype, <i>Kcna1</i> <sup>-/-</sup> mice displayed a robust multifaceted behavioral syndrome featuring marked nocturnal hyperactivity, insomnia, reduced sheltering, fragmented feeding/drinking rhythms, sensory over-responsivity and diminished wheel-running. In identical recordings, <i>Kcna1</i> <sup>+/-</sup> mice only displayed <i>increased</i> sheltering, <i>Lgi1</i> <sup>+/-</sup> mice displayed mild insomnia and <i>Cntnap2</i> <sup>-/-</sup> mice showed home-cage <i>hypoactivity</i> . <i>Kcna1</i> loss in parvalbumin-positive interneurons (Pv-Cre) resulted in a subtle phenocopy, with mild insomnia accompanied by reduced sheltering behavior, while similar deletions in forebrain pyramidal neurons (Emx1-Cre) or dopaminergic neurons (DAT-Cre) were asymptomatic. Adult-onset conditional deletions of <i>Kcna1</i> also produced only mild insomnia 6 weeks later. To survey the molecular landscape in <i>Kcna1</i> <sup>-/-</sup> mice, we conducted a mass spectrometry proteomic analysis of dissected hippocampal tissue (a predominant seizure onset zone and where astrogliosis is observed). This revealed significant upregulations in BDNF (brain-derived neurotrophic factor) and the immediate early transcription factor EGR3 (early growth response-3), which is necessary for the induction of BDNF following electroconvulsive seizures. Heterozygous or homozygous deletions of <i>Egr3</i> in <i>Kcna1</i> <sup>-/-</sup> mice resulted in significant survival prolongation, a partial neurobehavioral rescue, and a significant improvement in the frequency of spontaneous seizures <i>and</i> spreading depolarization events. These clinical improvements were associated with an amelioration of BDNF induction, hippocampal astrogliosis and proteomic disturbances. Together, these data illustrate how an ion channel that governs excitability at millisecond scales also shapes the spatiotemporal structure of spontaneous behavior at meso- or macroscopic time scales. Our results provide a model and a set of precision endpoints to understand how ictal and interictal features of DEE may be ameliorated by inhibiting the long-term downstream transcriptional alterations imparted by early life seizures.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208490/pdf/","citationCount":"0","resultStr":"{\"title\":\"EGR3 Deletion Rescues Developmental and Epileptic Encephalopathy in <i>Kcna1</i> -null Mice.\",\"authors\":\"Arindam Ghosh Mazumder, Saifina Karedia, Nandani Adhyapak, Catharina Schimer, John Samuel Bass, Jessica L Kamen, Miranda J Jankovic, Qinglong Miao, Amelia L Gallitano, Alexander B Saltzman, Antrix Jain, Anna Malovannaya, Edward Glasscock, Isamu Aiba, Jeffrey L Noebels, Vaishnav Krishnan\",\"doi\":\"10.1101/2025.06.07.658422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>KCNA1</i> encodes the α-subunit of the voltage-gated potassium channel K <sub>V</sub> 1.1. Mutations in K <sub>V</sub> 1.1's pore domain result in developmental and epileptic encephalopathy (DEE), where early life seizures and a culprit lesion synergistically disrupt neurodevelopmental trajectories, resulting in intellectual disability that often presents with disturbances in sleep, sociability and sensory processing. Abnormalities in the subcellular localization of Kv1.1, via mutations in/autoantibodies against LGI1 and CNTNAP2, also give rise to syndromes of epilepsy and neuropsychiatric impairment. Mice with deletions of <i>Kcna1</i> <sup>(\\\"-/-\\\")</sup> display spontaneous seizures at 2-3 weeks of age and premature mortality. In this study, we applied instrumented home-cage monitoring to examine how aberrations in KCNA1 expression may result in pervasive alterations in spontaneous behavior. Compared to wildtype, <i>Kcna1</i> <sup>-/-</sup> mice displayed a robust multifaceted behavioral syndrome featuring marked nocturnal hyperactivity, insomnia, reduced sheltering, fragmented feeding/drinking rhythms, sensory over-responsivity and diminished wheel-running. In identical recordings, <i>Kcna1</i> <sup>+/-</sup> mice only displayed <i>increased</i> sheltering, <i>Lgi1</i> <sup>+/-</sup> mice displayed mild insomnia and <i>Cntnap2</i> <sup>-/-</sup> mice showed home-cage <i>hypoactivity</i> . <i>Kcna1</i> loss in parvalbumin-positive interneurons (Pv-Cre) resulted in a subtle phenocopy, with mild insomnia accompanied by reduced sheltering behavior, while similar deletions in forebrain pyramidal neurons (Emx1-Cre) or dopaminergic neurons (DAT-Cre) were asymptomatic. Adult-onset conditional deletions of <i>Kcna1</i> also produced only mild insomnia 6 weeks later. To survey the molecular landscape in <i>Kcna1</i> <sup>-/-</sup> mice, we conducted a mass spectrometry proteomic analysis of dissected hippocampal tissue (a predominant seizure onset zone and where astrogliosis is observed). This revealed significant upregulations in BDNF (brain-derived neurotrophic factor) and the immediate early transcription factor EGR3 (early growth response-3), which is necessary for the induction of BDNF following electroconvulsive seizures. Heterozygous or homozygous deletions of <i>Egr3</i> in <i>Kcna1</i> <sup>-/-</sup> mice resulted in significant survival prolongation, a partial neurobehavioral rescue, and a significant improvement in the frequency of spontaneous seizures <i>and</i> spreading depolarization events. These clinical improvements were associated with an amelioration of BDNF induction, hippocampal astrogliosis and proteomic disturbances. Together, these data illustrate how an ion channel that governs excitability at millisecond scales also shapes the spatiotemporal structure of spontaneous behavior at meso- or macroscopic time scales. Our results provide a model and a set of precision endpoints to understand how ictal and interictal features of DEE may be ameliorated by inhibiting the long-term downstream transcriptional alterations imparted by early life seizures.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208490/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.06.07.658422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.07.658422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

KCNA1编码电压门控钾通道kv1.1的α-亚基。kv1.1孔结构域的突变导致发育性和癫痫性脑病(DEE),其中早期生命发作和罪魁祸首病变协同破坏神经发育轨迹,导致智力残疾,通常表现为睡眠、社交和感觉处理障碍。通过LGI1和CNTNAP2自身抗体的突变,Kv1.1的亚细胞定位异常也会引起癫痫综合征和神经精神障碍。Kcna1(“-/-”)缺失的小鼠在2-3周龄时出现自发性癫痫发作和过早死亡。在这项研究中,我们应用仪器在家笼监测来检查KCNA1表达的畸变如何导致自发行为的普遍改变。与野生型相比,Kcna1 -/-小鼠表现出强大的多方面行为综合征,包括明显的夜间多动、失眠、躲避减少、摄食/饮水节奏不连贯、感觉过度反应和轮跑减少。在相同的记录中,Kcna1 +/-小鼠仅表现出增加的庇护,Lgi1 +/-小鼠表现出轻度失眠,而Cntnap2 -/-小鼠表现出家庭笼活动不足。细小蛋白阳性中间神经元(Pv-Cre)的Kcna1缺失导致轻微的表型,伴有轻度失眠,并伴有庇护行为减少,而前脑锥体神经元(Emx1-Cre)或多巴胺能神经元(DAT-Cre)的类似缺失则无症状。成人发病的Kcna1条件缺失6周后也只产生轻度失眠。为了调查Kcna1 -/-小鼠的分子景观,我们对解剖的海马组织(主要的癫痫发作区和观察到星形胶质细胞形成的地方)进行了质谱蛋白质组学分析。这揭示了BDNF(脑源性神经营养因子)和即时早期转录因子EGR3(早期生长反应-3)的显著上调,这是电惊厥发作后诱导BDNF所必需的。Kcna1 -/-小鼠中Egr3的杂合或纯合缺失可显著延长生存期,部分神经行为恢复,并显著改善自发癫痫发作频率和扩散性去极化事件。这些临床改善与BDNF诱导、海马星形胶质增生和蛋白质组紊乱的改善有关。总之,这些数据说明了在毫秒尺度上控制兴奋性的离子通道如何在中观或宏观时间尺度上塑造自发行为的时空结构。我们的研究结果提供了一个模型和一组精确的终点,以了解如何通过抑制早期癫痫发作带来的长期下游转录改变来改善DEE的发作期和发作期特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EGR3 Deletion Rescues Developmental and Epileptic Encephalopathy in Kcna1 -null Mice.

KCNA1 encodes the α-subunit of the voltage-gated potassium channel K V 1.1. Mutations in K V 1.1's pore domain result in developmental and epileptic encephalopathy (DEE), where early life seizures and a culprit lesion synergistically disrupt neurodevelopmental trajectories, resulting in intellectual disability that often presents with disturbances in sleep, sociability and sensory processing. Abnormalities in the subcellular localization of Kv1.1, via mutations in/autoantibodies against LGI1 and CNTNAP2, also give rise to syndromes of epilepsy and neuropsychiatric impairment. Mice with deletions of Kcna1 ("-/-") display spontaneous seizures at 2-3 weeks of age and premature mortality. In this study, we applied instrumented home-cage monitoring to examine how aberrations in KCNA1 expression may result in pervasive alterations in spontaneous behavior. Compared to wildtype, Kcna1 -/- mice displayed a robust multifaceted behavioral syndrome featuring marked nocturnal hyperactivity, insomnia, reduced sheltering, fragmented feeding/drinking rhythms, sensory over-responsivity and diminished wheel-running. In identical recordings, Kcna1 +/- mice only displayed increased sheltering, Lgi1 +/- mice displayed mild insomnia and Cntnap2 -/- mice showed home-cage hypoactivity . Kcna1 loss in parvalbumin-positive interneurons (Pv-Cre) resulted in a subtle phenocopy, with mild insomnia accompanied by reduced sheltering behavior, while similar deletions in forebrain pyramidal neurons (Emx1-Cre) or dopaminergic neurons (DAT-Cre) were asymptomatic. Adult-onset conditional deletions of Kcna1 also produced only mild insomnia 6 weeks later. To survey the molecular landscape in Kcna1 -/- mice, we conducted a mass spectrometry proteomic analysis of dissected hippocampal tissue (a predominant seizure onset zone and where astrogliosis is observed). This revealed significant upregulations in BDNF (brain-derived neurotrophic factor) and the immediate early transcription factor EGR3 (early growth response-3), which is necessary for the induction of BDNF following electroconvulsive seizures. Heterozygous or homozygous deletions of Egr3 in Kcna1 -/- mice resulted in significant survival prolongation, a partial neurobehavioral rescue, and a significant improvement in the frequency of spontaneous seizures and spreading depolarization events. These clinical improvements were associated with an amelioration of BDNF induction, hippocampal astrogliosis and proteomic disturbances. Together, these data illustrate how an ion channel that governs excitability at millisecond scales also shapes the spatiotemporal structure of spontaneous behavior at meso- or macroscopic time scales. Our results provide a model and a set of precision endpoints to understand how ictal and interictal features of DEE may be ameliorated by inhibiting the long-term downstream transcriptional alterations imparted by early life seizures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信