为人工智能驱动的红外结构解析设定新标杆。

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Marvin Alberts, Federico Zipoli and Teodoro Laino
{"title":"为人工智能驱动的红外结构解析设定新标杆。","authors":"Marvin Alberts, Federico Zipoli and Teodoro Laino","doi":"10.1039/D5DD00131E","DOIUrl":null,"url":null,"abstract":"<p >Automated structure elucidation from infrared (IR) spectra represents a significant breakthrough in analytical chemistry, having recently gained momentum through the application of Transformer-based language models. In this work, we improve our original Transformer architecture, refine spectral data representations, and implement novel augmentation and decoding strategies to significantly increase performance. We report a Top-1 accuracy of 63.79% and a Top-10 accuracy of 83.95% compared to the current performance of state-of-the-art models of 53.56% and 80.36%, respectively. Our findings not only set a new performance benchmark but also strengthen confidence in the promising future of AI-driven IR spectroscopy as a practical and powerful tool for structure elucidation. To facilitate broad adoption among chemical laboratories and domain experts, we openly share our models and code.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1936-1943"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203481/pdf/","citationCount":"0","resultStr":"{\"title\":\"Setting new benchmarks in AI-driven infrared structure elucidation†\",\"authors\":\"Marvin Alberts, Federico Zipoli and Teodoro Laino\",\"doi\":\"10.1039/D5DD00131E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Automated structure elucidation from infrared (IR) spectra represents a significant breakthrough in analytical chemistry, having recently gained momentum through the application of Transformer-based language models. In this work, we improve our original Transformer architecture, refine spectral data representations, and implement novel augmentation and decoding strategies to significantly increase performance. We report a Top-1 accuracy of 63.79% and a Top-10 accuracy of 83.95% compared to the current performance of state-of-the-art models of 53.56% and 80.36%, respectively. Our findings not only set a new performance benchmark but also strengthen confidence in the promising future of AI-driven IR spectroscopy as a practical and powerful tool for structure elucidation. To facilitate broad adoption among chemical laboratories and domain experts, we openly share our models and code.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 7\",\"pages\":\" 1936-1943\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203481/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00131e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00131e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

红外(IR)光谱的自动结构解析代表了分析化学的重大突破,最近通过基于transformer的语言模型的应用获得了动力。在这项工作中,我们改进了原始的Transformer架构,改进了频谱数据表示,并实现了新的增强和解码策略,以显着提高性能。我们报告的Top-1准确率为63.79%,Top-10准确率为83.95%,而目前最先进的模型分别为53.56%和80.36%。我们的发现不仅设定了新的性能基准,而且增强了对人工智能驱动的红外光谱作为一种实用而强大的结构解析工具的前景的信心。为了促进化学实验室和领域专家之间的广泛采用,我们公开地共享我们的模型和代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Setting new benchmarks in AI-driven infrared structure elucidation†

Setting new benchmarks in AI-driven infrared structure elucidation†

Automated structure elucidation from infrared (IR) spectra represents a significant breakthrough in analytical chemistry, having recently gained momentum through the application of Transformer-based language models. In this work, we improve our original Transformer architecture, refine spectral data representations, and implement novel augmentation and decoding strategies to significantly increase performance. We report a Top-1 accuracy of 63.79% and a Top-10 accuracy of 83.95% compared to the current performance of state-of-the-art models of 53.56% and 80.36%, respectively. Our findings not only set a new performance benchmark but also strengthen confidence in the promising future of AI-driven IR spectroscopy as a practical and powerful tool for structure elucidation. To facilitate broad adoption among chemical laboratories and domain experts, we openly share our models and code.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信