Joonas Ilmavirta, Antti Kykkänen, Matti Lassas, Teemu Saksala, Andrew Shedlock
{"title":"旅行时间数据的Lipschitz稳定性。","authors":"Joonas Ilmavirta, Antti Kykkänen, Matti Lassas, Teemu Saksala, Andrew Shedlock","doi":"10.1007/s12220-025-02084-3","DOIUrl":null,"url":null,"abstract":"<p><p>We prove that the reconstruction of a certain type of length spaces from their travel time data on a closed subset is Lipschitz stable. The travel time data is the set of distance functions from the entire space, measured on the chosen closed subset. The case of a Riemannian manifold with boundary with the boundary as the measurement set appears is a classical geometric inverse problem arising from Gel'fand's inverse boundary spectral problem. Examples of spaces satisfying our assumptions include some non-simple Riemannian manifolds, Euclidean domains with non-trivial topology, and metric trees.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"35 8","pages":"244"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206210/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lipschitz Stability of Travel Time Data.\",\"authors\":\"Joonas Ilmavirta, Antti Kykkänen, Matti Lassas, Teemu Saksala, Andrew Shedlock\",\"doi\":\"10.1007/s12220-025-02084-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We prove that the reconstruction of a certain type of length spaces from their travel time data on a closed subset is Lipschitz stable. The travel time data is the set of distance functions from the entire space, measured on the chosen closed subset. The case of a Riemannian manifold with boundary with the boundary as the measurement set appears is a classical geometric inverse problem arising from Gel'fand's inverse boundary spectral problem. Examples of spaces satisfying our assumptions include some non-simple Riemannian manifolds, Euclidean domains with non-trivial topology, and metric trees.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":\"35 8\",\"pages\":\"244\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206210/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-025-02084-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-025-02084-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove that the reconstruction of a certain type of length spaces from their travel time data on a closed subset is Lipschitz stable. The travel time data is the set of distance functions from the entire space, measured on the chosen closed subset. The case of a Riemannian manifold with boundary with the boundary as the measurement set appears is a classical geometric inverse problem arising from Gel'fand's inverse boundary spectral problem. Examples of spaces satisfying our assumptions include some non-simple Riemannian manifolds, Euclidean domains with non-trivial topology, and metric trees.
期刊介绍:
JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.