{"title":"工程,设计和选择荧光激活蛋白的先进成像和生物传感。","authors":"Lina El Hajji, Arnaud Gautier","doi":"10.1093/protein/gzaf007","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence-activating proteins (FAP) have emerged as a novel class of genetically encoded tools for fluorescence-based protein imaging, complementing the existing toolkit consisting of fluorescent proteins and self-labeling tags. FAP have the ability to bind and activate the fluorescence of small molecules, called fluorogens, that are otherwise non-fluorescent, allowing protein localization with high specificity and little background. In this review, we present the engineering of FAP and FAP-based reporters from various protein scaffolds, focusing on the different strategies implemented to design and engineer their properties for specific biological imaging applications.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering, design and selection of fluorescence-activating proteins for advanced imaging and biosensing.\",\"authors\":\"Lina El Hajji, Arnaud Gautier\",\"doi\":\"10.1093/protein/gzaf007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorescence-activating proteins (FAP) have emerged as a novel class of genetically encoded tools for fluorescence-based protein imaging, complementing the existing toolkit consisting of fluorescent proteins and self-labeling tags. FAP have the ability to bind and activate the fluorescence of small molecules, called fluorogens, that are otherwise non-fluorescent, allowing protein localization with high specificity and little background. In this review, we present the engineering of FAP and FAP-based reporters from various protein scaffolds, focusing on the different strategies implemented to design and engineer their properties for specific biological imaging applications.</p>\",\"PeriodicalId\":54543,\"journal\":{\"name\":\"Protein Engineering Design & Selection\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Engineering Design & Selection\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzaf007\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzaf007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Engineering, design and selection of fluorescence-activating proteins for advanced imaging and biosensing.
Fluorescence-activating proteins (FAP) have emerged as a novel class of genetically encoded tools for fluorescence-based protein imaging, complementing the existing toolkit consisting of fluorescent proteins and self-labeling tags. FAP have the ability to bind and activate the fluorescence of small molecules, called fluorogens, that are otherwise non-fluorescent, allowing protein localization with high specificity and little background. In this review, we present the engineering of FAP and FAP-based reporters from various protein scaffolds, focusing on the different strategies implemented to design and engineer their properties for specific biological imaging applications.
期刊介绍:
Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.