Miroslav Nuriddinov, Polina Belokopytova, Veniamin Fishman
{"title":"Charm是一个灵活的管道,用于模拟hi - c样数据上的染色体重排。","authors":"Miroslav Nuriddinov, Polina Belokopytova, Veniamin Fishman","doi":"10.1093/nargab/lqaf081","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying structural variants (SVs) remains a pivotal challenge within genomic studies. The recent advent of chromosome conformation capture (3C) techniques has emerged as a promising avenue for the accurate identification of SVs. However, development and validation of computational methods leveraging 3C data necessitate comprehensive datasets of well-characterized chromosomal rearrangements, which are presently lacking. In this study, we introduce Charm (https://github.com/genomech/Charm): a robust computational framework tailored for Hi-C data simulation. Our findings demonstrate Charm's efficacy in benchmarking both novel and established tools for SV detection. Additionally, we furnish an extensive dataset of simulated Hi-C maps, paving the way for subsequent benchmarking endeavors.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 2","pages":"lqaf081"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204402/pdf/","citationCount":"0","resultStr":"{\"title\":\"Charm is a flexible pipeline to simulate chromosomal rearrangements on Hi-C-like data.\",\"authors\":\"Miroslav Nuriddinov, Polina Belokopytova, Veniamin Fishman\",\"doi\":\"10.1093/nargab/lqaf081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying structural variants (SVs) remains a pivotal challenge within genomic studies. The recent advent of chromosome conformation capture (3C) techniques has emerged as a promising avenue for the accurate identification of SVs. However, development and validation of computational methods leveraging 3C data necessitate comprehensive datasets of well-characterized chromosomal rearrangements, which are presently lacking. In this study, we introduce Charm (https://github.com/genomech/Charm): a robust computational framework tailored for Hi-C data simulation. Our findings demonstrate Charm's efficacy in benchmarking both novel and established tools for SV detection. Additionally, we furnish an extensive dataset of simulated Hi-C maps, paving the way for subsequent benchmarking endeavors.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"7 2\",\"pages\":\"lqaf081\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204402/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqaf081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Charm is a flexible pipeline to simulate chromosomal rearrangements on Hi-C-like data.
Identifying structural variants (SVs) remains a pivotal challenge within genomic studies. The recent advent of chromosome conformation capture (3C) techniques has emerged as a promising avenue for the accurate identification of SVs. However, development and validation of computational methods leveraging 3C data necessitate comprehensive datasets of well-characterized chromosomal rearrangements, which are presently lacking. In this study, we introduce Charm (https://github.com/genomech/Charm): a robust computational framework tailored for Hi-C data simulation. Our findings demonstrate Charm's efficacy in benchmarking both novel and established tools for SV detection. Additionally, we furnish an extensive dataset of simulated Hi-C maps, paving the way for subsequent benchmarking endeavors.