{"title":"综述:骨骼肌氧化应激及其背后的非编码rna。","authors":"Dongdong Bo, Jiameng Shen, Yilin Bai, Jing Li, Yuanyuan Wang, Ziqi Li, Zerui You, Anran Gai, Qing Zhang, Yueyu Bai","doi":"10.1007/s11010-025-05339-3","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative damage, primarily caused by reactive oxygen species (ROS), leads to the oxidation of cellular components, particularly in skeletal muscles. ROS accumulation in muscle fibers results in the oxidation of proteins, lipids, and nucleic acids, affecting the stability of muscle structure and function. Signaling pathways, including NF-κB, MAPK, Nrf2-ARE, PI3K-AKT, and p53 pathways, are intimately associated with oxidative stress. Understanding the impact of oxidative stress on skeletal muscles and the regulatory mechanisms of ncRNA on skeletal muscle oxidative stress is crucial for preventing muscle damage caused by oxidative stress. Oxidative stress mechanisms in skeletal muscles are intricate, and involve many regulatory factors and signaling pathways. NcRNAs play critical regulatory roles in these responses, but their specific functions and mechanisms require further research. Future research should explore in depth the interactions between ncRNAs and other molecules, providing new theoretical foundations and practical guidance for the prevention of muscle oxidative stress. This review summarizes current understanding of molecular mechanisms driving oxidative stress in skeletal muscle, with emphasis on regulatory networks mediated by ncRNAs. Future investigations should focus on multi-omics integration of ncRNA crosstalk with redox signaling pathways, potentially informing preventive strategies against muscle dysfunction in metabolic and aging-related conditions.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review: oxidative stress in skeletal muscle and the non-coding RNAs behind it.\",\"authors\":\"Dongdong Bo, Jiameng Shen, Yilin Bai, Jing Li, Yuanyuan Wang, Ziqi Li, Zerui You, Anran Gai, Qing Zhang, Yueyu Bai\",\"doi\":\"10.1007/s11010-025-05339-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative damage, primarily caused by reactive oxygen species (ROS), leads to the oxidation of cellular components, particularly in skeletal muscles. ROS accumulation in muscle fibers results in the oxidation of proteins, lipids, and nucleic acids, affecting the stability of muscle structure and function. Signaling pathways, including NF-κB, MAPK, Nrf2-ARE, PI3K-AKT, and p53 pathways, are intimately associated with oxidative stress. Understanding the impact of oxidative stress on skeletal muscles and the regulatory mechanisms of ncRNA on skeletal muscle oxidative stress is crucial for preventing muscle damage caused by oxidative stress. Oxidative stress mechanisms in skeletal muscles are intricate, and involve many regulatory factors and signaling pathways. NcRNAs play critical regulatory roles in these responses, but their specific functions and mechanisms require further research. Future research should explore in depth the interactions between ncRNAs and other molecules, providing new theoretical foundations and practical guidance for the prevention of muscle oxidative stress. This review summarizes current understanding of molecular mechanisms driving oxidative stress in skeletal muscle, with emphasis on regulatory networks mediated by ncRNAs. Future investigations should focus on multi-omics integration of ncRNA crosstalk with redox signaling pathways, potentially informing preventive strategies against muscle dysfunction in metabolic and aging-related conditions.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-025-05339-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05339-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A review: oxidative stress in skeletal muscle and the non-coding RNAs behind it.
Oxidative damage, primarily caused by reactive oxygen species (ROS), leads to the oxidation of cellular components, particularly in skeletal muscles. ROS accumulation in muscle fibers results in the oxidation of proteins, lipids, and nucleic acids, affecting the stability of muscle structure and function. Signaling pathways, including NF-κB, MAPK, Nrf2-ARE, PI3K-AKT, and p53 pathways, are intimately associated with oxidative stress. Understanding the impact of oxidative stress on skeletal muscles and the regulatory mechanisms of ncRNA on skeletal muscle oxidative stress is crucial for preventing muscle damage caused by oxidative stress. Oxidative stress mechanisms in skeletal muscles are intricate, and involve many regulatory factors and signaling pathways. NcRNAs play critical regulatory roles in these responses, but their specific functions and mechanisms require further research. Future research should explore in depth the interactions between ncRNAs and other molecules, providing new theoretical foundations and practical guidance for the prevention of muscle oxidative stress. This review summarizes current understanding of molecular mechanisms driving oxidative stress in skeletal muscle, with emphasis on regulatory networks mediated by ncRNAs. Future investigations should focus on multi-omics integration of ncRNA crosstalk with redox signaling pathways, potentially informing preventive strategies against muscle dysfunction in metabolic and aging-related conditions.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.