Ying Sun, Lingli Cai, Bowei Yu, Haojie Zhang, Ziteng Zhang, Xiaoqin Xu, Yuefeng Yu, Jiang Li, Chi Chen, Fangzhen Xia, Yingli Lu, Kun Zhang, Ningjian Wang
{"title":"l -苯丙氨酸通过抑制bnip3介导的线粒体自噬促进肝脏脂肪变性。","authors":"Ying Sun, Lingli Cai, Bowei Yu, Haojie Zhang, Ziteng Zhang, Xiaoqin Xu, Yuefeng Yu, Jiang Li, Chi Chen, Fangzhen Xia, Yingli Lu, Kun Zhang, Ningjian Wang","doi":"10.1186/s10020-025-01303-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>L-Phenylalanine (L-Phe) levels are elevated in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). However, whether L-Phe induces liver steatosis and the underlying mechanism remain unknown. This study aimed to investigate the mechanism through which L-Phe promotes liver steatosis.</p><p><strong>Methods: </strong>We utilized human data from the UK Biobank and SPECT-China studies. Plasma/serum samples were collected for metabolomic testing to measure L-Phe levels. A rat model with L-Phe in the drinking water was established to investigate changes in hepatic lipid metabolism. In addition, BNIP3 was overexpressed both in vitro and in vivo to validate the role of L-Phe in BNIP3-mediated mitophagy associated with liver steatosis.</p><p><strong>Results: </strong>In both populations, elevated L-Phe quartiles were associated with increased body mass index, triglyceride, and transaminase levels and increased odds of MASLD (all p < 0.05). Rats exposed to L-Phe had increased hepatic lipid deposition and decreased mitophagy in the liver. Differentially expressed proteins were enriched in the PPARα and fatty acid β-oxidation signalling pathways, with downregulation of the mitophagy marker BNIP3. Mitophagy was activated by rapamycin and then inhibited by L-Phe, indicating that elevated L-Phe promoted lipid accumulation by suppressing mitophagy. BNIP3 overexpression effectively mitigated L-Phe-induced hepatic steatosis by restoring mitophagy. Moreover, L-Phe regulates the BNIP3-mediated PPARα and AMPK/mTOR signalling pathways to promote hepatic steatosis.</p><p><strong>Conclusions: </strong>Our study revealed the role of L-Phe in regulating lipid metabolism and promoting liver steatosis via BNIP3-mediated mitophagy. These findings provide novel insights into the link between L-Phe and liver steatosis, suggesting potential nutritional intervention strategies for preventing MASLD.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"250"},"PeriodicalIF":6.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207805/pdf/","citationCount":"0","resultStr":"{\"title\":\"L-Phenylalanine promotes liver steatosis by inhibiting BNIP3-mediated mitophagy.\",\"authors\":\"Ying Sun, Lingli Cai, Bowei Yu, Haojie Zhang, Ziteng Zhang, Xiaoqin Xu, Yuefeng Yu, Jiang Li, Chi Chen, Fangzhen Xia, Yingli Lu, Kun Zhang, Ningjian Wang\",\"doi\":\"10.1186/s10020-025-01303-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>L-Phenylalanine (L-Phe) levels are elevated in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). However, whether L-Phe induces liver steatosis and the underlying mechanism remain unknown. This study aimed to investigate the mechanism through which L-Phe promotes liver steatosis.</p><p><strong>Methods: </strong>We utilized human data from the UK Biobank and SPECT-China studies. Plasma/serum samples were collected for metabolomic testing to measure L-Phe levels. A rat model with L-Phe in the drinking water was established to investigate changes in hepatic lipid metabolism. In addition, BNIP3 was overexpressed both in vitro and in vivo to validate the role of L-Phe in BNIP3-mediated mitophagy associated with liver steatosis.</p><p><strong>Results: </strong>In both populations, elevated L-Phe quartiles were associated with increased body mass index, triglyceride, and transaminase levels and increased odds of MASLD (all p < 0.05). Rats exposed to L-Phe had increased hepatic lipid deposition and decreased mitophagy in the liver. Differentially expressed proteins were enriched in the PPARα and fatty acid β-oxidation signalling pathways, with downregulation of the mitophagy marker BNIP3. Mitophagy was activated by rapamycin and then inhibited by L-Phe, indicating that elevated L-Phe promoted lipid accumulation by suppressing mitophagy. BNIP3 overexpression effectively mitigated L-Phe-induced hepatic steatosis by restoring mitophagy. Moreover, L-Phe regulates the BNIP3-mediated PPARα and AMPK/mTOR signalling pathways to promote hepatic steatosis.</p><p><strong>Conclusions: </strong>Our study revealed the role of L-Phe in regulating lipid metabolism and promoting liver steatosis via BNIP3-mediated mitophagy. These findings provide novel insights into the link between L-Phe and liver steatosis, suggesting potential nutritional intervention strategies for preventing MASLD.</p>\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":\"31 1\",\"pages\":\"250\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207805/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-025-01303-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01303-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
L-Phenylalanine promotes liver steatosis by inhibiting BNIP3-mediated mitophagy.
Background: L-Phenylalanine (L-Phe) levels are elevated in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). However, whether L-Phe induces liver steatosis and the underlying mechanism remain unknown. This study aimed to investigate the mechanism through which L-Phe promotes liver steatosis.
Methods: We utilized human data from the UK Biobank and SPECT-China studies. Plasma/serum samples were collected for metabolomic testing to measure L-Phe levels. A rat model with L-Phe in the drinking water was established to investigate changes in hepatic lipid metabolism. In addition, BNIP3 was overexpressed both in vitro and in vivo to validate the role of L-Phe in BNIP3-mediated mitophagy associated with liver steatosis.
Results: In both populations, elevated L-Phe quartiles were associated with increased body mass index, triglyceride, and transaminase levels and increased odds of MASLD (all p < 0.05). Rats exposed to L-Phe had increased hepatic lipid deposition and decreased mitophagy in the liver. Differentially expressed proteins were enriched in the PPARα and fatty acid β-oxidation signalling pathways, with downregulation of the mitophagy marker BNIP3. Mitophagy was activated by rapamycin and then inhibited by L-Phe, indicating that elevated L-Phe promoted lipid accumulation by suppressing mitophagy. BNIP3 overexpression effectively mitigated L-Phe-induced hepatic steatosis by restoring mitophagy. Moreover, L-Phe regulates the BNIP3-mediated PPARα and AMPK/mTOR signalling pathways to promote hepatic steatosis.
Conclusions: Our study revealed the role of L-Phe in regulating lipid metabolism and promoting liver steatosis via BNIP3-mediated mitophagy. These findings provide novel insights into the link between L-Phe and liver steatosis, suggesting potential nutritional intervention strategies for preventing MASLD.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.