l -苯丙氨酸通过抑制bnip3介导的线粒体自噬促进肝脏脂肪变性。

IF 6.4 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ying Sun, Lingli Cai, Bowei Yu, Haojie Zhang, Ziteng Zhang, Xiaoqin Xu, Yuefeng Yu, Jiang Li, Chi Chen, Fangzhen Xia, Yingli Lu, Kun Zhang, Ningjian Wang
{"title":"l -苯丙氨酸通过抑制bnip3介导的线粒体自噬促进肝脏脂肪变性。","authors":"Ying Sun, Lingli Cai, Bowei Yu, Haojie Zhang, Ziteng Zhang, Xiaoqin Xu, Yuefeng Yu, Jiang Li, Chi Chen, Fangzhen Xia, Yingli Lu, Kun Zhang, Ningjian Wang","doi":"10.1186/s10020-025-01303-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>L-Phenylalanine (L-Phe) levels are elevated in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). However, whether L-Phe induces liver steatosis and the underlying mechanism remain unknown. This study aimed to investigate the mechanism through which L-Phe promotes liver steatosis.</p><p><strong>Methods: </strong>We utilized human data from the UK Biobank and SPECT-China studies. Plasma/serum samples were collected for metabolomic testing to measure L-Phe levels. A rat model with L-Phe in the drinking water was established to investigate changes in hepatic lipid metabolism. In addition, BNIP3 was overexpressed both in vitro and in vivo to validate the role of L-Phe in BNIP3-mediated mitophagy associated with liver steatosis.</p><p><strong>Results: </strong>In both populations, elevated L-Phe quartiles were associated with increased body mass index, triglyceride, and transaminase levels and increased odds of MASLD (all p < 0.05). Rats exposed to L-Phe had increased hepatic lipid deposition and decreased mitophagy in the liver. Differentially expressed proteins were enriched in the PPARα and fatty acid β-oxidation signalling pathways, with downregulation of the mitophagy marker BNIP3. Mitophagy was activated by rapamycin and then inhibited by L-Phe, indicating that elevated L-Phe promoted lipid accumulation by suppressing mitophagy. BNIP3 overexpression effectively mitigated L-Phe-induced hepatic steatosis by restoring mitophagy. Moreover, L-Phe regulates the BNIP3-mediated PPARα and AMPK/mTOR signalling pathways to promote hepatic steatosis.</p><p><strong>Conclusions: </strong>Our study revealed the role of L-Phe in regulating lipid metabolism and promoting liver steatosis via BNIP3-mediated mitophagy. These findings provide novel insights into the link between L-Phe and liver steatosis, suggesting potential nutritional intervention strategies for preventing MASLD.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"250"},"PeriodicalIF":6.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207805/pdf/","citationCount":"0","resultStr":"{\"title\":\"L-Phenylalanine promotes liver steatosis by inhibiting BNIP3-mediated mitophagy.\",\"authors\":\"Ying Sun, Lingli Cai, Bowei Yu, Haojie Zhang, Ziteng Zhang, Xiaoqin Xu, Yuefeng Yu, Jiang Li, Chi Chen, Fangzhen Xia, Yingli Lu, Kun Zhang, Ningjian Wang\",\"doi\":\"10.1186/s10020-025-01303-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>L-Phenylalanine (L-Phe) levels are elevated in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). However, whether L-Phe induces liver steatosis and the underlying mechanism remain unknown. This study aimed to investigate the mechanism through which L-Phe promotes liver steatosis.</p><p><strong>Methods: </strong>We utilized human data from the UK Biobank and SPECT-China studies. Plasma/serum samples were collected for metabolomic testing to measure L-Phe levels. A rat model with L-Phe in the drinking water was established to investigate changes in hepatic lipid metabolism. In addition, BNIP3 was overexpressed both in vitro and in vivo to validate the role of L-Phe in BNIP3-mediated mitophagy associated with liver steatosis.</p><p><strong>Results: </strong>In both populations, elevated L-Phe quartiles were associated with increased body mass index, triglyceride, and transaminase levels and increased odds of MASLD (all p < 0.05). Rats exposed to L-Phe had increased hepatic lipid deposition and decreased mitophagy in the liver. Differentially expressed proteins were enriched in the PPARα and fatty acid β-oxidation signalling pathways, with downregulation of the mitophagy marker BNIP3. Mitophagy was activated by rapamycin and then inhibited by L-Phe, indicating that elevated L-Phe promoted lipid accumulation by suppressing mitophagy. BNIP3 overexpression effectively mitigated L-Phe-induced hepatic steatosis by restoring mitophagy. Moreover, L-Phe regulates the BNIP3-mediated PPARα and AMPK/mTOR signalling pathways to promote hepatic steatosis.</p><p><strong>Conclusions: </strong>Our study revealed the role of L-Phe in regulating lipid metabolism and promoting liver steatosis via BNIP3-mediated mitophagy. These findings provide novel insights into the link between L-Phe and liver steatosis, suggesting potential nutritional intervention strategies for preventing MASLD.</p>\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":\"31 1\",\"pages\":\"250\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207805/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-025-01303-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01303-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:l -苯丙氨酸(L-Phe)水平在代谢功能障碍相关脂肪变性肝病(MASLD)患者中升高。然而,l -苯丙氨酸是否会诱导肝脏脂肪变性及其机制尚不清楚。本研究旨在探讨l -苯丙氨酸促进肝脏脂肪变性的机制。方法:我们利用来自英国生物银行和SPECT-China研究的人类数据。收集血浆/血清样本进行代谢组学检测以测定L-Phe水平。建立饮水中添加l -苯丙氨酸大鼠模型,观察其肝脏脂质代谢的变化。此外,在体外和体内均对BNIP3进行过表达,以验证L-Phe在BNIP3介导的与肝脏脂肪变性相关的线粒体自噬中的作用。结果:在这两个人群中,升高的L-Phe四分位数与体重指数、甘油三酯和转氨酶水平的增加以及MASLD的几率增加有关(均为p)。结论:我们的研究揭示了L-Phe通过bip3介导的线粒体自噬调节脂质代谢和促进肝脏脂肪变性的作用。这些发现为L-Phe和肝脏脂肪变性之间的联系提供了新的见解,提出了预防MASLD的潜在营养干预策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L-Phenylalanine promotes liver steatosis by inhibiting BNIP3-mediated mitophagy.

Background: L-Phenylalanine (L-Phe) levels are elevated in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). However, whether L-Phe induces liver steatosis and the underlying mechanism remain unknown. This study aimed to investigate the mechanism through which L-Phe promotes liver steatosis.

Methods: We utilized human data from the UK Biobank and SPECT-China studies. Plasma/serum samples were collected for metabolomic testing to measure L-Phe levels. A rat model with L-Phe in the drinking water was established to investigate changes in hepatic lipid metabolism. In addition, BNIP3 was overexpressed both in vitro and in vivo to validate the role of L-Phe in BNIP3-mediated mitophagy associated with liver steatosis.

Results: In both populations, elevated L-Phe quartiles were associated with increased body mass index, triglyceride, and transaminase levels and increased odds of MASLD (all p < 0.05). Rats exposed to L-Phe had increased hepatic lipid deposition and decreased mitophagy in the liver. Differentially expressed proteins were enriched in the PPARα and fatty acid β-oxidation signalling pathways, with downregulation of the mitophagy marker BNIP3. Mitophagy was activated by rapamycin and then inhibited by L-Phe, indicating that elevated L-Phe promoted lipid accumulation by suppressing mitophagy. BNIP3 overexpression effectively mitigated L-Phe-induced hepatic steatosis by restoring mitophagy. Moreover, L-Phe regulates the BNIP3-mediated PPARα and AMPK/mTOR signalling pathways to promote hepatic steatosis.

Conclusions: Our study revealed the role of L-Phe in regulating lipid metabolism and promoting liver steatosis via BNIP3-mediated mitophagy. These findings provide novel insights into the link between L-Phe and liver steatosis, suggesting potential nutritional intervention strategies for preventing MASLD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信