{"title":"磁流变液离心泵送实验研究。","authors":"Tim Dumais, Jean-Sébastien Plante, David Rancourt","doi":"10.1177/1045389X251344476","DOIUrl":null,"url":null,"abstract":"<p><p>This paper studies the potential of using a centrifugal pump to handle magnetorheological fluid with the ultimate goal of integrating such a pump directly into a magnetorheological clutch to increase MR actuator life and stabilize performance over time. A centrifugal pump design is proposed, and two prototype sizes are constructed. Experimental characterization of the pumps prototypes reveals that, even with a magnetorheological fluid containing 40% V/V of ferromagnetic microparticles, the standard scaling laws for centrifugal pumps provide accurate predictions of performance with changes in rotation speed. However, the results showed that these laws do not fully account for geometric effects when scaling the pump size due to differences in impeller performance. The results also show that a centrifugal pump of 46 mm in diameter can effectively circulate magnetorheological fluid at a flow rate of 90 mL/min per shear interface in a commercial MR clutch.</p>","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"36 11","pages":"739-749"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204616/pdf/","citationCount":"0","resultStr":"{\"title\":\"Experimental study of centrifugal pumping of magnetorheological fluid.\",\"authors\":\"Tim Dumais, Jean-Sébastien Plante, David Rancourt\",\"doi\":\"10.1177/1045389X251344476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper studies the potential of using a centrifugal pump to handle magnetorheological fluid with the ultimate goal of integrating such a pump directly into a magnetorheological clutch to increase MR actuator life and stabilize performance over time. A centrifugal pump design is proposed, and two prototype sizes are constructed. Experimental characterization of the pumps prototypes reveals that, even with a magnetorheological fluid containing 40% V/V of ferromagnetic microparticles, the standard scaling laws for centrifugal pumps provide accurate predictions of performance with changes in rotation speed. However, the results showed that these laws do not fully account for geometric effects when scaling the pump size due to differences in impeller performance. The results also show that a centrifugal pump of 46 mm in diameter can effectively circulate magnetorheological fluid at a flow rate of 90 mL/min per shear interface in a commercial MR clutch.</p>\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"36 11\",\"pages\":\"739-749\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204616/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389X251344476\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389X251344476","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental study of centrifugal pumping of magnetorheological fluid.
This paper studies the potential of using a centrifugal pump to handle magnetorheological fluid with the ultimate goal of integrating such a pump directly into a magnetorheological clutch to increase MR actuator life and stabilize performance over time. A centrifugal pump design is proposed, and two prototype sizes are constructed. Experimental characterization of the pumps prototypes reveals that, even with a magnetorheological fluid containing 40% V/V of ferromagnetic microparticles, the standard scaling laws for centrifugal pumps provide accurate predictions of performance with changes in rotation speed. However, the results showed that these laws do not fully account for geometric effects when scaling the pump size due to differences in impeller performance. The results also show that a centrifugal pump of 46 mm in diameter can effectively circulate magnetorheological fluid at a flow rate of 90 mL/min per shear interface in a commercial MR clutch.
期刊介绍:
The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.