Stephanie A Thomas, Colleen M Pike, Cypress E Perkins, Sean T Brown, Xochilt M Espinoza Jaen, Arthur S McMillan, Casey M Theriot
{"title":"艰难梭菌毒素改变宿主代谢途径和结肠上皮胆汁酸稳态基因表达。","authors":"Stephanie A Thomas, Colleen M Pike, Cypress E Perkins, Sean T Brown, Xochilt M Espinoza Jaen, Arthur S McMillan, Casey M Theriot","doi":"10.1128/iai.00150-25","DOIUrl":null,"url":null,"abstract":"<p><p>A major risk factor for acquiring <i>Clostridioides difficile</i> is antibiotic usage that disrupts a healthy microbial gut community, facilitating the establishment of infection. Once established, <i>C. difficile</i> secretes exotoxins (TcdA and TcdB) that are internalized into host colonic epithelial cells where they disrupt gut barrier function and induce hyperinflammation resulting in severe diarrhea and possibly leading to death. We employed three different platforms to explore gene expression of cells in the gut when exposed to <i>C. difficile</i> or its toxins, TcdA and TcdB. An antibiotic-treated mouse model of <i>Clostridioides difficile</i> infection (CDI) was used to identify differential gene expression with a NanoString Technologies mouse inflammatory gene panel consisting of 770 genes, including a subset of bile acid (BA) homeostasis and nuclear receptor genes. In the cecal tissue of mice with CDI, reduced expression was observed for genes involved in peroxisome proliferator-activated receptor (PPAR) signaling and cholesterol and glucose metabolism, while a significant increase in expression was observed for IL-17 related inflammatory genes. Similarly, Caco-2 cell culture and primary human colonic epithelial cells (hCE) exposed to toxins for 24 h showed altered expression in several PPAR-regulated and cholesterol metabolic genes similar to those found in mice. These cell culture experiments also revealed significant alterations in gene expression of the Farnesoid X receptor BA regulatory pathway. Together, these data suggest that exposure to <i>C. difficile</i> and its toxins may alter host cholesterol metabolic processes, including BA transport and synthesis.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":" ","pages":"e0015025"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341375/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Clostridioides difficile</i> toxins alter host metabolic pathway and bile acid homeostasis gene expression in colonic epithelium.\",\"authors\":\"Stephanie A Thomas, Colleen M Pike, Cypress E Perkins, Sean T Brown, Xochilt M Espinoza Jaen, Arthur S McMillan, Casey M Theriot\",\"doi\":\"10.1128/iai.00150-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A major risk factor for acquiring <i>Clostridioides difficile</i> is antibiotic usage that disrupts a healthy microbial gut community, facilitating the establishment of infection. Once established, <i>C. difficile</i> secretes exotoxins (TcdA and TcdB) that are internalized into host colonic epithelial cells where they disrupt gut barrier function and induce hyperinflammation resulting in severe diarrhea and possibly leading to death. We employed three different platforms to explore gene expression of cells in the gut when exposed to <i>C. difficile</i> or its toxins, TcdA and TcdB. An antibiotic-treated mouse model of <i>Clostridioides difficile</i> infection (CDI) was used to identify differential gene expression with a NanoString Technologies mouse inflammatory gene panel consisting of 770 genes, including a subset of bile acid (BA) homeostasis and nuclear receptor genes. In the cecal tissue of mice with CDI, reduced expression was observed for genes involved in peroxisome proliferator-activated receptor (PPAR) signaling and cholesterol and glucose metabolism, while a significant increase in expression was observed for IL-17 related inflammatory genes. Similarly, Caco-2 cell culture and primary human colonic epithelial cells (hCE) exposed to toxins for 24 h showed altered expression in several PPAR-regulated and cholesterol metabolic genes similar to those found in mice. These cell culture experiments also revealed significant alterations in gene expression of the Farnesoid X receptor BA regulatory pathway. Together, these data suggest that exposure to <i>C. difficile</i> and its toxins may alter host cholesterol metabolic processes, including BA transport and synthesis.</p>\",\"PeriodicalId\":13541,\"journal\":{\"name\":\"Infection and Immunity\",\"volume\":\" \",\"pages\":\"e0015025\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341375/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infection and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/iai.00150-25\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00150-25","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Clostridioides difficile toxins alter host metabolic pathway and bile acid homeostasis gene expression in colonic epithelium.
A major risk factor for acquiring Clostridioides difficile is antibiotic usage that disrupts a healthy microbial gut community, facilitating the establishment of infection. Once established, C. difficile secretes exotoxins (TcdA and TcdB) that are internalized into host colonic epithelial cells where they disrupt gut barrier function and induce hyperinflammation resulting in severe diarrhea and possibly leading to death. We employed three different platforms to explore gene expression of cells in the gut when exposed to C. difficile or its toxins, TcdA and TcdB. An antibiotic-treated mouse model of Clostridioides difficile infection (CDI) was used to identify differential gene expression with a NanoString Technologies mouse inflammatory gene panel consisting of 770 genes, including a subset of bile acid (BA) homeostasis and nuclear receptor genes. In the cecal tissue of mice with CDI, reduced expression was observed for genes involved in peroxisome proliferator-activated receptor (PPAR) signaling and cholesterol and glucose metabolism, while a significant increase in expression was observed for IL-17 related inflammatory genes. Similarly, Caco-2 cell culture and primary human colonic epithelial cells (hCE) exposed to toxins for 24 h showed altered expression in several PPAR-regulated and cholesterol metabolic genes similar to those found in mice. These cell culture experiments also revealed significant alterations in gene expression of the Farnesoid X receptor BA regulatory pathway. Together, these data suggest that exposure to C. difficile and its toxins may alter host cholesterol metabolic processes, including BA transport and synthesis.
期刊介绍:
Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.