Vinit J Gilvaz, Aishwarya Sudheer, Anthony M Reginato
{"title":"类风湿性关节炎的新兴人工智能创新和临床应用的挑战。","authors":"Vinit J Gilvaz, Aishwarya Sudheer, Anthony M Reginato","doi":"10.1007/s11926-025-01193-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>This review was written to inform practicing clinical rheumatologists about recent advances in artificial intelligence (AI) based research in rheumatoid arthritis (RA), using accessible and practical language. We highlight developments from 2023 to early 2025 across diagnostic imaging, treatment prediction, drug discovery, and patient-facing tools. Given the increasing clinical interest in AI and its potential to augment care delivery, this article aims to bridge the gap between technical innovation and real-world rheumatology practice.</p><p><strong>Recent findings: </strong>Several AI models have demonstrated high accuracy in early RA detection using imaging modalities such as thermal imaging and nuclear scans. Predictive models for treatment response have leveraged routinely collected electronic health record (EHR) data, moving closer to practical application in clinical workflows. Patient-facing tools like mobile symptom checkers and large language models (LLMs) such as ChatGPT show promise in enhancing education and engagement, although accuracy and safety remain variable. AI has also shown utility in identifying novel biomarkers and accelerating drug discovery. Despite these advances, as of early 2025, no AI-based tools have received FDA approval for use in rheumatology, in contrast to other specialties. Artificial intelligence holds tremendous promise to enhance clinical care in RA-from early diagnosis to personalized therapy. However, clinical adoption remains limited due to regulatory, technical, and implementation challenges. A streamlined regulatory framework and closer collaboration between clinicians, researchers, and industry partners are urgently needed. With thoughtful integration, AI can serve as a valuable adjunct in addressing clinical complexity and workforce shortages in rheumatology.</p>","PeriodicalId":10761,"journal":{"name":"Current Rheumatology Reports","volume":"27 1","pages":"28"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging Artificial Intelligence Innovations in Rheumatoid Arthritis and Challenges to Clinical Adoption.\",\"authors\":\"Vinit J Gilvaz, Aishwarya Sudheer, Anthony M Reginato\",\"doi\":\"10.1007/s11926-025-01193-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>This review was written to inform practicing clinical rheumatologists about recent advances in artificial intelligence (AI) based research in rheumatoid arthritis (RA), using accessible and practical language. We highlight developments from 2023 to early 2025 across diagnostic imaging, treatment prediction, drug discovery, and patient-facing tools. Given the increasing clinical interest in AI and its potential to augment care delivery, this article aims to bridge the gap between technical innovation and real-world rheumatology practice.</p><p><strong>Recent findings: </strong>Several AI models have demonstrated high accuracy in early RA detection using imaging modalities such as thermal imaging and nuclear scans. Predictive models for treatment response have leveraged routinely collected electronic health record (EHR) data, moving closer to practical application in clinical workflows. Patient-facing tools like mobile symptom checkers and large language models (LLMs) such as ChatGPT show promise in enhancing education and engagement, although accuracy and safety remain variable. AI has also shown utility in identifying novel biomarkers and accelerating drug discovery. Despite these advances, as of early 2025, no AI-based tools have received FDA approval for use in rheumatology, in contrast to other specialties. Artificial intelligence holds tremendous promise to enhance clinical care in RA-from early diagnosis to personalized therapy. However, clinical adoption remains limited due to regulatory, technical, and implementation challenges. A streamlined regulatory framework and closer collaboration between clinicians, researchers, and industry partners are urgently needed. With thoughtful integration, AI can serve as a valuable adjunct in addressing clinical complexity and workforce shortages in rheumatology.</p>\",\"PeriodicalId\":10761,\"journal\":{\"name\":\"Current Rheumatology Reports\",\"volume\":\"27 1\",\"pages\":\"28\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Rheumatology Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11926-025-01193-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RHEUMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Rheumatology Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11926-025-01193-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
Emerging Artificial Intelligence Innovations in Rheumatoid Arthritis and Challenges to Clinical Adoption.
Purpose of review: This review was written to inform practicing clinical rheumatologists about recent advances in artificial intelligence (AI) based research in rheumatoid arthritis (RA), using accessible and practical language. We highlight developments from 2023 to early 2025 across diagnostic imaging, treatment prediction, drug discovery, and patient-facing tools. Given the increasing clinical interest in AI and its potential to augment care delivery, this article aims to bridge the gap between technical innovation and real-world rheumatology practice.
Recent findings: Several AI models have demonstrated high accuracy in early RA detection using imaging modalities such as thermal imaging and nuclear scans. Predictive models for treatment response have leveraged routinely collected electronic health record (EHR) data, moving closer to practical application in clinical workflows. Patient-facing tools like mobile symptom checkers and large language models (LLMs) such as ChatGPT show promise in enhancing education and engagement, although accuracy and safety remain variable. AI has also shown utility in identifying novel biomarkers and accelerating drug discovery. Despite these advances, as of early 2025, no AI-based tools have received FDA approval for use in rheumatology, in contrast to other specialties. Artificial intelligence holds tremendous promise to enhance clinical care in RA-from early diagnosis to personalized therapy. However, clinical adoption remains limited due to regulatory, technical, and implementation challenges. A streamlined regulatory framework and closer collaboration between clinicians, researchers, and industry partners are urgently needed. With thoughtful integration, AI can serve as a valuable adjunct in addressing clinical complexity and workforce shortages in rheumatology.
期刊介绍:
This journal aims to review the most important, recently published research in the field of rheumatology. By providing clear, insightful, balanced contributions by international experts, the journal intends to serve all those involved in the care and prevention of rheumatologic conditions.
We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas such as the many forms of arthritis, osteoporosis and metabolic bone disease, and systemic lupus erythematosus. Section Editors, in turn, select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. An international Editorial Board reviews the annual table of contents, suggests articles of special interest to their country/region, and ensures that topics are current and include emerging research. Commentaries from well-known figures in the field are also occasionally provided.