在转基因小鼠中,肺特异性TGFβ过表达增加气道纤维化和气道收缩性。

IF 3.6 2区 医学 Q1 PHYSIOLOGY
Julia G Chitty, Maggie Lam, Weiyi Mao, Simon G Royce, Philip G Bardin, Jane E Bourke, Belinda J Thomas
{"title":"在转基因小鼠中,肺特异性TGFβ过表达增加气道纤维化和气道收缩性。","authors":"Julia G Chitty, Maggie Lam, Weiyi Mao, Simon G Royce, Philip G Bardin, Jane E Bourke, Belinda J Thomas","doi":"10.1152/ajplung.00017.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Transforming growth factor β1 (TGFβ1) is a pleiotropic cytokine implicated in the pathophysiology of chronic lung diseases such as asthma and chronic obstructive pulmonary disease. Epithelial TGFβ1 is released in response to injury, inflammatory stimuli, and during bronchoconstriction to induce fibrosis. We hypothesized that elevated expression of endogenous TGFβ1, localized to the lung, would elicit autocrine effects to alter airway responsiveness. We utilized a transgenic mouse model of doxycycline (Dox)-induced, lung-specific overexpression of active TGFβ1 by giving Dox (0.25 mg/mL in drinking water, 8 wk), or normal water as a control. Comparing Dox with control groups, levels of TGFβ1 were ∼30-fold higher in bronchoalveolar lavage fluid (BALF), but not in serum, as measured by ELISA. BALF cells, predominantly macrophages, were ∼3.5-fold higher, with no evidence of tissue inflammation in hematoxylin and eosin (H&E)-stained sections from Dox mice. Higher collagen deposition was evident around the airways in Masson's trichrome-stained sections [subepithelial thickness (µm): control 10.4 ± 10.9, <i>n</i> = 9; Dox 25.8 ± 1.5, <i>n</i> = 13, <i>P</i> < 0.0001]. TGFβ1 overexpression increased baseline airway resistance and induced airway hyperresponsiveness (AHR) to methacholine (MCh) in vivo, as measured using in vivo plethysmography. Comparing precision-cut lung slices (PCLS) from separate Dox-treated and control mice, maximum contraction of intrapulmonary airways to MCh was increased ex vivo. Overall, elevated lung TGFβ1 levels resulted in localized airway fibrosis associated with increased airway contraction to MCh. These autocrine effects of endogenous TGFβ1 implicate its potential contribution to AHR, suggesting that targeting TGFβ1 may provide a novel approach to oppose excessive airway contraction in chronic lung diseases.<b>NEW & NOTEWORTHY</b> TGFβ upregulation is common in respiratory diseases. Here, the authors have utilized for the first time a mouse model of lung-specific overexpression of active TGFβ to demonstrate the dual role of TGFβ1 in structural remodeling and dysregulation of airway contractility. Given these pathologies are common to asthma and COPD, this model provides a unique opportunity to identify essential novel therapeutics for the treatment of chronic lung diseases.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L255-L265"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lung-specific TGFβ overexpression increases airway fibrosis and airway contractility in transgenic mice.\",\"authors\":\"Julia G Chitty, Maggie Lam, Weiyi Mao, Simon G Royce, Philip G Bardin, Jane E Bourke, Belinda J Thomas\",\"doi\":\"10.1152/ajplung.00017.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transforming growth factor β1 (TGFβ1) is a pleiotropic cytokine implicated in the pathophysiology of chronic lung diseases such as asthma and chronic obstructive pulmonary disease. Epithelial TGFβ1 is released in response to injury, inflammatory stimuli, and during bronchoconstriction to induce fibrosis. We hypothesized that elevated expression of endogenous TGFβ1, localized to the lung, would elicit autocrine effects to alter airway responsiveness. We utilized a transgenic mouse model of doxycycline (Dox)-induced, lung-specific overexpression of active TGFβ1 by giving Dox (0.25 mg/mL in drinking water, 8 wk), or normal water as a control. Comparing Dox with control groups, levels of TGFβ1 were ∼30-fold higher in bronchoalveolar lavage fluid (BALF), but not in serum, as measured by ELISA. BALF cells, predominantly macrophages, were ∼3.5-fold higher, with no evidence of tissue inflammation in hematoxylin and eosin (H&E)-stained sections from Dox mice. Higher collagen deposition was evident around the airways in Masson's trichrome-stained sections [subepithelial thickness (µm): control 10.4 ± 10.9, <i>n</i> = 9; Dox 25.8 ± 1.5, <i>n</i> = 13, <i>P</i> < 0.0001]. TGFβ1 overexpression increased baseline airway resistance and induced airway hyperresponsiveness (AHR) to methacholine (MCh) in vivo, as measured using in vivo plethysmography. Comparing precision-cut lung slices (PCLS) from separate Dox-treated and control mice, maximum contraction of intrapulmonary airways to MCh was increased ex vivo. Overall, elevated lung TGFβ1 levels resulted in localized airway fibrosis associated with increased airway contraction to MCh. These autocrine effects of endogenous TGFβ1 implicate its potential contribution to AHR, suggesting that targeting TGFβ1 may provide a novel approach to oppose excessive airway contraction in chronic lung diseases.<b>NEW & NOTEWORTHY</b> TGFβ upregulation is common in respiratory diseases. Here, the authors have utilized for the first time a mouse model of lung-specific overexpression of active TGFβ to demonstrate the dual role of TGFβ1 in structural remodeling and dysregulation of airway contractility. Given these pathologies are common to asthma and COPD, this model provides a unique opportunity to identify essential novel therapeutics for the treatment of chronic lung diseases.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"L255-L265\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00017.2025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00017.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

转化生长因子β 1 (TGFß1)是一种多效细胞因子,与哮喘和慢性阻塞性肺疾病等慢性肺部疾病的病理生理有关。上皮TGFß1在损伤、炎症刺激和支气管收缩期间释放以诱导纤维化。我们假设内源性TGFß1在肺中的表达升高会引起自分泌作用,从而改变气道反应性。我们利用多西环素(Dox)诱导的活性TGFß1的肺特异性过表达转基因小鼠模型,给予多西环素(饮用水中0.25 mg/ml, 8周)或正常水作为对照。ELISA检测,与对照组相比,血清中tgf - ß1水平升高约30倍,但血清中tgf - ß1水平未升高。在Dox小鼠的h&e染色切片中,BALF细胞(主要是巨噬细胞)升高了约3.5倍,没有组织炎症的证据。Masson三色染色切片显示气道周围胶原明显增多(上皮下厚度(µm):对照组10.4±10.9,n=9;Dox 25.8±1.5,n=13,在体内,使用体内体积描记仪测量。对比单独的dox处理小鼠和对照组的精确肺切片(PCLS),肺内气道对MCh的最大收缩在体外增加。总体而言,肺TGFß1水平升高导致局部气道纤维化,与气道收缩增加相关。内源性TGFß1的这些自分泌作用暗示其对AHR的潜在贡献,表明靶向TGFß1可能提供一种新的方法来对抗慢性肺部疾病的气道过度收缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lung-specific TGFβ overexpression increases airway fibrosis and airway contractility in transgenic mice.

Transforming growth factor β1 (TGFβ1) is a pleiotropic cytokine implicated in the pathophysiology of chronic lung diseases such as asthma and chronic obstructive pulmonary disease. Epithelial TGFβ1 is released in response to injury, inflammatory stimuli, and during bronchoconstriction to induce fibrosis. We hypothesized that elevated expression of endogenous TGFβ1, localized to the lung, would elicit autocrine effects to alter airway responsiveness. We utilized a transgenic mouse model of doxycycline (Dox)-induced, lung-specific overexpression of active TGFβ1 by giving Dox (0.25 mg/mL in drinking water, 8 wk), or normal water as a control. Comparing Dox with control groups, levels of TGFβ1 were ∼30-fold higher in bronchoalveolar lavage fluid (BALF), but not in serum, as measured by ELISA. BALF cells, predominantly macrophages, were ∼3.5-fold higher, with no evidence of tissue inflammation in hematoxylin and eosin (H&E)-stained sections from Dox mice. Higher collagen deposition was evident around the airways in Masson's trichrome-stained sections [subepithelial thickness (µm): control 10.4 ± 10.9, n = 9; Dox 25.8 ± 1.5, n = 13, P < 0.0001]. TGFβ1 overexpression increased baseline airway resistance and induced airway hyperresponsiveness (AHR) to methacholine (MCh) in vivo, as measured using in vivo plethysmography. Comparing precision-cut lung slices (PCLS) from separate Dox-treated and control mice, maximum contraction of intrapulmonary airways to MCh was increased ex vivo. Overall, elevated lung TGFβ1 levels resulted in localized airway fibrosis associated with increased airway contraction to MCh. These autocrine effects of endogenous TGFβ1 implicate its potential contribution to AHR, suggesting that targeting TGFβ1 may provide a novel approach to oppose excessive airway contraction in chronic lung diseases.NEW & NOTEWORTHY TGFβ upregulation is common in respiratory diseases. Here, the authors have utilized for the first time a mouse model of lung-specific overexpression of active TGFβ to demonstrate the dual role of TGFβ1 in structural remodeling and dysregulation of airway contractility. Given these pathologies are common to asthma and COPD, this model provides a unique opportunity to identify essential novel therapeutics for the treatment of chronic lung diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信