{"title":"分裂仿射Kac-Moody量子对称对的Drinfeld表示的兼容性。","authors":"Jian-Rong Li, Tomasz Przeździecki","doi":"10.1007/s11005-025-01964-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\((\\textbf{U}, \\textbf{U}^\\imath )\\)</span> be a split affine quantum symmetric pair of type <span>\\(\\textsf{B}_n^{(1)}, \\textsf{C}_n^{(1)}\\)</span> or <span>\\(\\textsf{D}_n^{(1)}\\)</span>. We prove factorization and coproduct formulae for the Drinfeld–Cartan operators <span>\\(\\Theta _i(z)\\)</span> in the Lu–Wang Drinfeld-type presentation, generalizing the type <span>\\(\\textsf{A}_n^{(1)}\\)</span> result from Przeździecki (arXiv:2311.13705). As an application, we show that a boundary analogue of the <i>q</i>-character map, defined via the spectra of these operators, is compatible with the usual <i>q</i>-character map. As an auxiliary result, we also produce explicit reduced expressions for the fundamental weights in the extended affine Weyl groups of classical types.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206215/pdf/","citationCount":"0","resultStr":"{\"title\":\"Compatibility of Drinfeld presentations for split affine Kac–Moody quantum symmetric pairs\",\"authors\":\"Jian-Rong Li, Tomasz Przeździecki\",\"doi\":\"10.1007/s11005-025-01964-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\((\\\\textbf{U}, \\\\textbf{U}^\\\\imath )\\\\)</span> be a split affine quantum symmetric pair of type <span>\\\\(\\\\textsf{B}_n^{(1)}, \\\\textsf{C}_n^{(1)}\\\\)</span> or <span>\\\\(\\\\textsf{D}_n^{(1)}\\\\)</span>. We prove factorization and coproduct formulae for the Drinfeld–Cartan operators <span>\\\\(\\\\Theta _i(z)\\\\)</span> in the Lu–Wang Drinfeld-type presentation, generalizing the type <span>\\\\(\\\\textsf{A}_n^{(1)}\\\\)</span> result from Przeździecki (arXiv:2311.13705). As an application, we show that a boundary analogue of the <i>q</i>-character map, defined via the spectra of these operators, is compatible with the usual <i>q</i>-character map. As an auxiliary result, we also produce explicit reduced expressions for the fundamental weights in the extended affine Weyl groups of classical types.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206215/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01964-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01964-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
设(U, U ')是类型为bn (1), cn(1)或dn(1)的分裂仿射量子对称对。我们在Lu-Wang的drinfeld型表示中证明了Drinfeld-Cartan算子Θ i (z)的分解和副积公式,推广了Przeździecki (arXiv:2311.13705)的A(1)型结果。作为一个应用,我们证明了由这些算子的谱定义的q-字符映射的边界模拟与通常的q-字符映射是兼容的。作为辅助结果,我们也给出了经典类型的扩展仿射Weyl群的基本权值的显式简化表达式。
Compatibility of Drinfeld presentations for split affine Kac–Moody quantum symmetric pairs
Let \((\textbf{U}, \textbf{U}^\imath )\) be a split affine quantum symmetric pair of type \(\textsf{B}_n^{(1)}, \textsf{C}_n^{(1)}\) or \(\textsf{D}_n^{(1)}\). We prove factorization and coproduct formulae for the Drinfeld–Cartan operators \(\Theta _i(z)\) in the Lu–Wang Drinfeld-type presentation, generalizing the type \(\textsf{A}_n^{(1)}\) result from Przeździecki (arXiv:2311.13705). As an application, we show that a boundary analogue of the q-character map, defined via the spectra of these operators, is compatible with the usual q-character map. As an auxiliary result, we also produce explicit reduced expressions for the fundamental weights in the extended affine Weyl groups of classical types.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.