分裂仿射Kac-Moody量子对称对的Drinfeld表示的兼容性。

IF 1.4 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Jian-Rong Li, Tomasz Przeździecki
{"title":"分裂仿射Kac-Moody量子对称对的Drinfeld表示的兼容性。","authors":"Jian-Rong Li,&nbsp;Tomasz Przeździecki","doi":"10.1007/s11005-025-01964-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\((\\textbf{U}, \\textbf{U}^\\imath )\\)</span> be a split affine quantum symmetric pair of type <span>\\(\\textsf{B}_n^{(1)}, \\textsf{C}_n^{(1)}\\)</span> or <span>\\(\\textsf{D}_n^{(1)}\\)</span>. We prove factorization and coproduct formulae for the Drinfeld–Cartan operators <span>\\(\\Theta _i(z)\\)</span> in the Lu–Wang Drinfeld-type presentation, generalizing the type <span>\\(\\textsf{A}_n^{(1)}\\)</span> result from Przeździecki (arXiv:2311.13705). As an application, we show that a boundary analogue of the <i>q</i>-character map, defined via the spectra of these operators, is compatible with the usual <i>q</i>-character map. As an auxiliary result, we also produce explicit reduced expressions for the fundamental weights in the extended affine Weyl groups of classical types.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206215/pdf/","citationCount":"0","resultStr":"{\"title\":\"Compatibility of Drinfeld presentations for split affine Kac–Moody quantum symmetric pairs\",\"authors\":\"Jian-Rong Li,&nbsp;Tomasz Przeździecki\",\"doi\":\"10.1007/s11005-025-01964-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\((\\\\textbf{U}, \\\\textbf{U}^\\\\imath )\\\\)</span> be a split affine quantum symmetric pair of type <span>\\\\(\\\\textsf{B}_n^{(1)}, \\\\textsf{C}_n^{(1)}\\\\)</span> or <span>\\\\(\\\\textsf{D}_n^{(1)}\\\\)</span>. We prove factorization and coproduct formulae for the Drinfeld–Cartan operators <span>\\\\(\\\\Theta _i(z)\\\\)</span> in the Lu–Wang Drinfeld-type presentation, generalizing the type <span>\\\\(\\\\textsf{A}_n^{(1)}\\\\)</span> result from Przeździecki (arXiv:2311.13705). As an application, we show that a boundary analogue of the <i>q</i>-character map, defined via the spectra of these operators, is compatible with the usual <i>q</i>-character map. As an auxiliary result, we also produce explicit reduced expressions for the fundamental weights in the extended affine Weyl groups of classical types.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206215/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01964-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01964-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

设(U, U ')是类型为bn (1), cn(1)或dn(1)的分裂仿射量子对称对。我们在Lu-Wang的drinfeld型表示中证明了Drinfeld-Cartan算子Θ i (z)的分解和副积公式,推广了Przeździecki (arXiv:2311.13705)的A(1)型结果。作为一个应用,我们证明了由这些算子的谱定义的q-字符映射的边界模拟与通常的q-字符映射是兼容的。作为辅助结果,我们也给出了经典类型的扩展仿射Weyl群的基本权值的显式简化表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Compatibility of Drinfeld presentations for split affine Kac–Moody quantum symmetric pairs

Compatibility of Drinfeld presentations for split affine Kac–Moody quantum symmetric pairs

Compatibility of Drinfeld presentations for split affine Kac–Moody quantum symmetric pairs

Compatibility of Drinfeld presentations for split affine Kac–Moody quantum symmetric pairs

Let \((\textbf{U}, \textbf{U}^\imath )\) be a split affine quantum symmetric pair of type \(\textsf{B}_n^{(1)}, \textsf{C}_n^{(1)}\) or \(\textsf{D}_n^{(1)}\). We prove factorization and coproduct formulae for the Drinfeld–Cartan operators \(\Theta _i(z)\) in the Lu–Wang Drinfeld-type presentation, generalizing the type \(\textsf{A}_n^{(1)}\) result from Przeździecki (arXiv:2311.13705). As an application, we show that a boundary analogue of the q-character map, defined via the spectra of these operators, is compatible with the usual q-character map. As an auxiliary result, we also produce explicit reduced expressions for the fundamental weights in the extended affine Weyl groups of classical types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信