超支化聚亚胺的CO2捕获特性:分子动力学模拟方法。

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2025-07-10 Epub Date: 2025-06-29 DOI:10.1021/acs.jpcb.5c03162
Junhe Chen, Guilherme R Weber Nakamura, Christopher W Jones, Sung Hyun Kwon, Seung Soon Jang
{"title":"超支化聚亚胺的CO2捕获特性:分子动力学模拟方法。","authors":"Junhe Chen, Guilherme R Weber Nakamura, Christopher W Jones, Sung Hyun Kwon, Seung Soon Jang","doi":"10.1021/acs.jpcb.5c03162","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the CO<sub>2</sub> capture characteristics of hyperbranched poly(ethylenimine) (HB-PEI) and poly(propyleneimine) (HB-PPI) through molecular dynamics simulations using density functional theory-calibrated force fields. Key features such as density, free volume, glass transition temperature, CO<sub>2</sub>/H<sub>2</sub>O distribution, and molecular diffusion are systematically investigated to elucidate structure-function relationships under dry and hydrated conditions. HB-PEI demonstrates a slightly higher density and lower free volume compared to HB-PPI yet shows superior CO<sub>2</sub> capture due to the high amine concentration. Glass transition analysis indicates a higher thermal mobility in HB-PEI, enhancing the CO<sub>2</sub> diffusivity. Pair correlation and coordination analyses confirm a stronger affinity of CO<sub>2</sub> with primary and secondary amines, particularly in hydrated environments where water competes with CO<sub>2</sub> for binding sites. Despite its more compact structure, HB-PEI outperformed HB-PPI in CO<sub>2</sub> and H<sub>2</sub>O transport, as confirmed by higher diffusion coefficients across all hydration levels. These findings highlight a critical balance among polymer architecture, amine accessibility, and hydration in designing next-generation solid amine sorbents for efficient direct air capture applications.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"7034-7044"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257528/pdf/","citationCount":"0","resultStr":"{\"title\":\"CO<sub>2</sub> Capture Characteristics of Hyperbranched Poly(alkylene imine): A Molecular Dynamics Simulation Approach.\",\"authors\":\"Junhe Chen, Guilherme R Weber Nakamura, Christopher W Jones, Sung Hyun Kwon, Seung Soon Jang\",\"doi\":\"10.1021/acs.jpcb.5c03162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the CO<sub>2</sub> capture characteristics of hyperbranched poly(ethylenimine) (HB-PEI) and poly(propyleneimine) (HB-PPI) through molecular dynamics simulations using density functional theory-calibrated force fields. Key features such as density, free volume, glass transition temperature, CO<sub>2</sub>/H<sub>2</sub>O distribution, and molecular diffusion are systematically investigated to elucidate structure-function relationships under dry and hydrated conditions. HB-PEI demonstrates a slightly higher density and lower free volume compared to HB-PPI yet shows superior CO<sub>2</sub> capture due to the high amine concentration. Glass transition analysis indicates a higher thermal mobility in HB-PEI, enhancing the CO<sub>2</sub> diffusivity. Pair correlation and coordination analyses confirm a stronger affinity of CO<sub>2</sub> with primary and secondary amines, particularly in hydrated environments where water competes with CO<sub>2</sub> for binding sites. Despite its more compact structure, HB-PEI outperformed HB-PPI in CO<sub>2</sub> and H<sub>2</sub>O transport, as confirmed by higher diffusion coefficients across all hydration levels. These findings highlight a critical balance among polymer architecture, amine accessibility, and hydration in designing next-generation solid amine sorbents for efficient direct air capture applications.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"7034-7044\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257528/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.5c03162\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c03162","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用密度泛函理论校准的力场,通过分子动力学模拟研究了超支化聚乙亚胺(HB-PEI)和聚丙亚胺(HB-PPI)的CO2捕获特性。系统地研究了密度、自由体积、玻璃化转变温度、CO2/H2O分布和分子扩散等关键特征,以阐明干燥和水合条件下的结构-功能关系。与HB-PPI相比,HB-PEI表现出稍高的密度和较低的自由体积,但由于高胺浓度,HB-PEI表现出优越的CO2捕获能力。玻璃化转变分析表明,HB-PEI具有较高的热迁移率,增强了CO2的扩散系数。对相关和配位分析证实,二氧化碳与伯胺和仲胺具有更强的亲和力,特别是在水与二氧化碳竞争结合位点的水合环境中。尽管其结构更紧凑,但HB-PEI在CO2和H2O运输方面的表现优于HB-PPI,这一点在所有水化水平下的扩散系数都更高。这些发现强调了在设计下一代固体胺吸附剂以实现高效直接空气捕获应用时,聚合物结构、胺可及性和水合作用之间的关键平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CO2 Capture Characteristics of Hyperbranched Poly(alkylene imine): A Molecular Dynamics Simulation Approach.

This study explores the CO2 capture characteristics of hyperbranched poly(ethylenimine) (HB-PEI) and poly(propyleneimine) (HB-PPI) through molecular dynamics simulations using density functional theory-calibrated force fields. Key features such as density, free volume, glass transition temperature, CO2/H2O distribution, and molecular diffusion are systematically investigated to elucidate structure-function relationships under dry and hydrated conditions. HB-PEI demonstrates a slightly higher density and lower free volume compared to HB-PPI yet shows superior CO2 capture due to the high amine concentration. Glass transition analysis indicates a higher thermal mobility in HB-PEI, enhancing the CO2 diffusivity. Pair correlation and coordination analyses confirm a stronger affinity of CO2 with primary and secondary amines, particularly in hydrated environments where water competes with CO2 for binding sites. Despite its more compact structure, HB-PEI outperformed HB-PPI in CO2 and H2O transport, as confirmed by higher diffusion coefficients across all hydration levels. These findings highlight a critical balance among polymer architecture, amine accessibility, and hydration in designing next-generation solid amine sorbents for efficient direct air capture applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信