基于串路径集体变量的束缚自由能计算。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Alessia Ghidini, Andrea Cavalli, Benoît Roux
{"title":"基于串路径集体变量的束缚自由能计算。","authors":"Alessia Ghidini, Andrea Cavalli, Benoît Roux","doi":"10.1021/acs.jpcb.5c02258","DOIUrl":null,"url":null,"abstract":"<p><p>Calculating the binding free energy of small drug-like molecules to a macromolecular receptor is one of the most important applications of molecular dynamics simulations. One computational approach (the \"geometrical route\") seeks to determine the binding free energy of a ligand by calculating the potential of mean force along a physical path corresponding to the dissociation of the ligand from its receptor. We show here that it is possible to rigorously map the entire ligand-receptor separation process onto a curvilinear separation pathway constructed from the string method and then sample the longitudinal and orthogonal order parameters defined from the Path Collective Variable (PCV) along this pathway to calculate the binding free energy. The theory is illustrated by computing the absolute binding free energy of a glycogen synthase kinase-3 beta (GSK-3β) inhibitor, and the results are compared with the result from a calculation based on the standard alchemical double decoupling approach.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binding Free Energy Calculations Based on the Path Collective Variable along a String Pathway.\",\"authors\":\"Alessia Ghidini, Andrea Cavalli, Benoît Roux\",\"doi\":\"10.1021/acs.jpcb.5c02258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Calculating the binding free energy of small drug-like molecules to a macromolecular receptor is one of the most important applications of molecular dynamics simulations. One computational approach (the \\\"geometrical route\\\") seeks to determine the binding free energy of a ligand by calculating the potential of mean force along a physical path corresponding to the dissociation of the ligand from its receptor. We show here that it is possible to rigorously map the entire ligand-receptor separation process onto a curvilinear separation pathway constructed from the string method and then sample the longitudinal and orthogonal order parameters defined from the Path Collective Variable (PCV) along this pathway to calculate the binding free energy. The theory is illustrated by computing the absolute binding free energy of a glycogen synthase kinase-3 beta (GSK-3β) inhibitor, and the results are compared with the result from a calculation based on the standard alchemical double decoupling approach.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.5c02258\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c02258","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

计算类药物小分子与大分子受体的结合自由能是分子动力学模拟最重要的应用之一。一种计算方法(“几何路径”)试图通过计算与配体与其受体解离相对应的物理路径上的平均力势来确定配体的结合自由能。我们在此表明,可以将整个配体-受体分离过程严格映射到由弦方法构建的曲线分离途径上,然后沿着该途径对路径集体变量(PCV)定义的纵向和正交序参数进行采样,以计算结合自由能。通过计算糖原合成酶激酶-3β (GSK-3β)抑制剂的绝对结合自由能来说明这一理论,并将结果与基于标准炼金术双解耦方法的计算结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binding Free Energy Calculations Based on the Path Collective Variable along a String Pathway.

Calculating the binding free energy of small drug-like molecules to a macromolecular receptor is one of the most important applications of molecular dynamics simulations. One computational approach (the "geometrical route") seeks to determine the binding free energy of a ligand by calculating the potential of mean force along a physical path corresponding to the dissociation of the ligand from its receptor. We show here that it is possible to rigorously map the entire ligand-receptor separation process onto a curvilinear separation pathway constructed from the string method and then sample the longitudinal and orthogonal order parameters defined from the Path Collective Variable (PCV) along this pathway to calculate the binding free energy. The theory is illustrated by computing the absolute binding free energy of a glycogen synthase kinase-3 beta (GSK-3β) inhibitor, and the results are compared with the result from a calculation based on the standard alchemical double decoupling approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信