Jiang Yeow*, Chee Geng Chia, Nadege Zi-Lin Lim, Xiaodan Zhao, Jie Yan and Shu-Sin Chng*,
{"title":"对细菌外膜脂质稳态重要的电机-定子复合物的力转导机制的结构见解。","authors":"Jiang Yeow*, Chee Geng Chia, Nadege Zi-Lin Lim, Xiaodan Zhao, Jie Yan and Shu-Sin Chng*, ","doi":"10.1021/jacs.4c18050","DOIUrl":null,"url":null,"abstract":"<p >Gram-negative bacteria assemble an asymmetric outer membrane (OM) that functions as an effective barrier against antibiotics. Building a stable and functional OM requires the assembly and maintenance of balanced levels of proteins, lipopolysaccharides, and phospholipids into the bilayer. In <i>Escherichia coli</i>, the trans-envelope Tol–Pal complex has recently been established to play a primary role in maintaining OM lipid homeostasis. It is believed that the motor–stator complex TolQR exploits the proton motive force in the inner membrane to induce conformational changes in the TolA effector, ultimately generating a force across the cell envelope to activate processes at the OM. Molecular details of how such force transduction occurs via the TolQRA complex are unknown. Here, we solve structures of the <i>E. coli</i> TolQRA complex using single-particle cryo-EM, capturing the transmembrane (TM) regions of the purified complex in two distinct states at ∼3.6 and ∼4.2 Å nominal resolutions. We define how the TolA N-terminal TM helix interacts with an asymmetric TolQ<sub>5</sub>R<sub>2</sub> subcomplex in two different positions, revealing how the two TolQRA states are related by rotation of the TolQ pentamer. By considering structural prediction and biochemical evidence for the periplasmic domains of the complex, we propose a working model for how proton passage through the complex induces rotary movement that can be coupled to TolA for force transduction across the cell envelope.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 28","pages":"24299–24308"},"PeriodicalIF":15.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Insights into the Force-Transducing Mechanism of a Motor–Stator Complex Important for Bacterial Outer Membrane Lipid Homeostasis\",\"authors\":\"Jiang Yeow*, Chee Geng Chia, Nadege Zi-Lin Lim, Xiaodan Zhao, Jie Yan and Shu-Sin Chng*, \",\"doi\":\"10.1021/jacs.4c18050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Gram-negative bacteria assemble an asymmetric outer membrane (OM) that functions as an effective barrier against antibiotics. Building a stable and functional OM requires the assembly and maintenance of balanced levels of proteins, lipopolysaccharides, and phospholipids into the bilayer. In <i>Escherichia coli</i>, the trans-envelope Tol–Pal complex has recently been established to play a primary role in maintaining OM lipid homeostasis. It is believed that the motor–stator complex TolQR exploits the proton motive force in the inner membrane to induce conformational changes in the TolA effector, ultimately generating a force across the cell envelope to activate processes at the OM. Molecular details of how such force transduction occurs via the TolQRA complex are unknown. Here, we solve structures of the <i>E. coli</i> TolQRA complex using single-particle cryo-EM, capturing the transmembrane (TM) regions of the purified complex in two distinct states at ∼3.6 and ∼4.2 Å nominal resolutions. We define how the TolA N-terminal TM helix interacts with an asymmetric TolQ<sub>5</sub>R<sub>2</sub> subcomplex in two different positions, revealing how the two TolQRA states are related by rotation of the TolQ pentamer. By considering structural prediction and biochemical evidence for the periplasmic domains of the complex, we propose a working model for how proton passage through the complex induces rotary movement that can be coupled to TolA for force transduction across the cell envelope.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 28\",\"pages\":\"24299–24308\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c18050\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c18050","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Structural Insights into the Force-Transducing Mechanism of a Motor–Stator Complex Important for Bacterial Outer Membrane Lipid Homeostasis
Gram-negative bacteria assemble an asymmetric outer membrane (OM) that functions as an effective barrier against antibiotics. Building a stable and functional OM requires the assembly and maintenance of balanced levels of proteins, lipopolysaccharides, and phospholipids into the bilayer. In Escherichia coli, the trans-envelope Tol–Pal complex has recently been established to play a primary role in maintaining OM lipid homeostasis. It is believed that the motor–stator complex TolQR exploits the proton motive force in the inner membrane to induce conformational changes in the TolA effector, ultimately generating a force across the cell envelope to activate processes at the OM. Molecular details of how such force transduction occurs via the TolQRA complex are unknown. Here, we solve structures of the E. coli TolQRA complex using single-particle cryo-EM, capturing the transmembrane (TM) regions of the purified complex in two distinct states at ∼3.6 and ∼4.2 Å nominal resolutions. We define how the TolA N-terminal TM helix interacts with an asymmetric TolQ5R2 subcomplex in two different positions, revealing how the two TolQRA states are related by rotation of the TolQ pentamer. By considering structural prediction and biochemical evidence for the periplasmic domains of the complex, we propose a working model for how proton passage through the complex induces rotary movement that can be coupled to TolA for force transduction across the cell envelope.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.