Haowen Bao, Yongmiao Hong, Yuying Sun, Shouyang Wang
{"title":"区间值天然气价格的混合非线性预测模型","authors":"Haowen Bao, Yongmiao Hong, Yuying Sun, Shouyang Wang","doi":"10.1002/for.3272","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper proposes a novel hybrid nonlinear interval decomposition ensemble (NIDE) framework to improve forecasting accuracy of interval-valued gas prices. The framework first decomposes the price series using bivariate empirical mode decomposition and interval multiscale permutation entropy to capture dynamics driven by long-term trends, events, and short-term fluctuations. Tailored models are then employed for each component, including a threshold autoregressive interval model, interval event study methodology, and interval random forest. Finally, an ensemble prediction integrates the component forecasts. Empirical results show that the NIDE approach significantly outperforms benchmarks in out-of-sample forecasting of interval-valued natural gas prices. For instance, the RMSE improvements range from 10.3% to 38.8% compared to benchmark models. Additionally, the NIDE approach not only enhances accuracy but also provides economic interpretation by identifying drivers like speculative trading and public interest proxied by online trends.</p>\n </div>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 5","pages":"1826-1848"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Hybrid Nonlinear Forecasting Model for Interval-Valued Gas Prices\",\"authors\":\"Haowen Bao, Yongmiao Hong, Yuying Sun, Shouyang Wang\",\"doi\":\"10.1002/for.3272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper proposes a novel hybrid nonlinear interval decomposition ensemble (NIDE) framework to improve forecasting accuracy of interval-valued gas prices. The framework first decomposes the price series using bivariate empirical mode decomposition and interval multiscale permutation entropy to capture dynamics driven by long-term trends, events, and short-term fluctuations. Tailored models are then employed for each component, including a threshold autoregressive interval model, interval event study methodology, and interval random forest. Finally, an ensemble prediction integrates the component forecasts. Empirical results show that the NIDE approach significantly outperforms benchmarks in out-of-sample forecasting of interval-valued natural gas prices. For instance, the RMSE improvements range from 10.3% to 38.8% compared to benchmark models. Additionally, the NIDE approach not only enhances accuracy but also provides economic interpretation by identifying drivers like speculative trading and public interest proxied by online trends.</p>\\n </div>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":\"44 5\",\"pages\":\"1826-1848\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3272\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3272","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
A Novel Hybrid Nonlinear Forecasting Model for Interval-Valued Gas Prices
This paper proposes a novel hybrid nonlinear interval decomposition ensemble (NIDE) framework to improve forecasting accuracy of interval-valued gas prices. The framework first decomposes the price series using bivariate empirical mode decomposition and interval multiscale permutation entropy to capture dynamics driven by long-term trends, events, and short-term fluctuations. Tailored models are then employed for each component, including a threshold autoregressive interval model, interval event study methodology, and interval random forest. Finally, an ensemble prediction integrates the component forecasts. Empirical results show that the NIDE approach significantly outperforms benchmarks in out-of-sample forecasting of interval-valued natural gas prices. For instance, the RMSE improvements range from 10.3% to 38.8% compared to benchmark models. Additionally, the NIDE approach not only enhances accuracy but also provides economic interpretation by identifying drivers like speculative trading and public interest proxied by online trends.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.