一阶偏微分方程约束下求解多维控制优化问题的新方法

IF 2.7 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Preeti, Anurag Jayswal, Tadeusz Antczak
{"title":"一阶偏微分方程约束下求解多维控制优化问题的新方法","authors":"Preeti,&nbsp;Anurag Jayswal,&nbsp;Tadeusz Antczak","doi":"10.1002/asjc.3550","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to provide the linearization technique to solve the multidimensional control optimization problem (MCOP) involving first-order partial differential equation (PDEs) constraints. Firstly, we use the modified objective function approach for simplifying the aforesaid extremum problem (MCOP) and show that the solution sets of the original control optimization problem and its modified control optimization problem (MCOP)\n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_{\\Omega} $$</annotation>\n </semantics></math> are equivalent under convexity assumptions. Further, we use the absolute value exact penalty function method to transform (MCOP)\n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_{\\Omega} $$</annotation>\n </semantics></math> into a penalized control problem (MCOP)\n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mi>Ω</mi>\n <mi>ϱ</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_{\\Omega \\varrho } $$</annotation>\n </semantics></math>. Then, we establish the equivalence between a minimizer of the modified penalized optimization problem (MCOP)\n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mi>Ω</mi>\n <mi>ϱ</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_{\\Omega \\varrho } $$</annotation>\n </semantics></math> and a saddle point of the Lagrangian defined for the modified optimization problem (MCOP)\n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_{\\Omega} $$</annotation>\n </semantics></math> under appropriate convexity hypotheses. Moreover, the results established in the paper are illustrated by some examples of MCOPs involving first-order PDEs constraints.</p>","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"27 4","pages":"1841-1853"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach for solving the multidimensional control optimization problems with first-order partial differential equations constraints\",\"authors\":\"Preeti,&nbsp;Anurag Jayswal,&nbsp;Tadeusz Antczak\",\"doi\":\"10.1002/asjc.3550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of this paper is to provide the linearization technique to solve the multidimensional control optimization problem (MCOP) involving first-order partial differential equation (PDEs) constraints. Firstly, we use the modified objective function approach for simplifying the aforesaid extremum problem (MCOP) and show that the solution sets of the original control optimization problem and its modified control optimization problem (MCOP)\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mi>Ω</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_{\\\\Omega} $$</annotation>\\n </semantics></math> are equivalent under convexity assumptions. Further, we use the absolute value exact penalty function method to transform (MCOP)\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mi>Ω</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_{\\\\Omega} $$</annotation>\\n </semantics></math> into a penalized control problem (MCOP)\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mi>Ω</mi>\\n <mi>ϱ</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_{\\\\Omega \\\\varrho } $$</annotation>\\n </semantics></math>. Then, we establish the equivalence between a minimizer of the modified penalized optimization problem (MCOP)\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mi>Ω</mi>\\n <mi>ϱ</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_{\\\\Omega \\\\varrho } $$</annotation>\\n </semantics></math> and a saddle point of the Lagrangian defined for the modified optimization problem (MCOP)\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mi>Ω</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_{\\\\Omega} $$</annotation>\\n </semantics></math> under appropriate convexity hypotheses. Moreover, the results established in the paper are illustrated by some examples of MCOPs involving first-order PDEs constraints.</p>\",\"PeriodicalId\":55453,\"journal\":{\"name\":\"Asian Journal of Control\",\"volume\":\"27 4\",\"pages\":\"1841-1853\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asjc.3550\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asjc.3550","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是提供线性化技术来解决包含一阶偏微分方程约束的多维控制优化问题。首先,我们利用修正目标函数法对上述极值问题(MCOP)进行简化,并证明了在凸性假设下,原控制优化问题(MCOP)及其修正控制优化问题(Ω $$ {}_{\Omega} $$)的解集是等价的。此外,我们使用绝对值精确惩罚函数方法将(MCOP) Ω $$ {}_{\Omega} $$转化为惩罚控制问题(MCOP) Ω ϱ$$ {}_{\Omega \varrho } $$。然后,我们建立了修正惩罚优化问题(MCOP) Ω ϱ $$ {}_{\Omega \varrho } $$的最小值与修正优化问题(MCOP)的拉格朗日鞍点之间的等价关系。Ω $$ {}_{\Omega} $$在适当的凸性假设下。此外,本文还通过包含一阶偏微分方程约束的mcop实例说明了所建立的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach for solving the multidimensional control optimization problems with first-order partial differential equations constraints

The purpose of this paper is to provide the linearization technique to solve the multidimensional control optimization problem (MCOP) involving first-order partial differential equation (PDEs) constraints. Firstly, we use the modified objective function approach for simplifying the aforesaid extremum problem (MCOP) and show that the solution sets of the original control optimization problem and its modified control optimization problem (MCOP) Ω $$ {}_{\Omega} $$ are equivalent under convexity assumptions. Further, we use the absolute value exact penalty function method to transform (MCOP) Ω $$ {}_{\Omega} $$ into a penalized control problem (MCOP) Ω ϱ $$ {}_{\Omega \varrho } $$ . Then, we establish the equivalence between a minimizer of the modified penalized optimization problem (MCOP) Ω ϱ $$ {}_{\Omega \varrho } $$ and a saddle point of the Lagrangian defined for the modified optimization problem (MCOP) Ω $$ {}_{\Omega} $$ under appropriate convexity hypotheses. Moreover, the results established in the paper are illustrated by some examples of MCOPs involving first-order PDEs constraints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Control
Asian Journal of Control 工程技术-自动化与控制系统
CiteScore
4.80
自引率
25.00%
发文量
253
审稿时长
7.2 months
期刊介绍: The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application. Published six times a year, the Journal aims to be a key platform for control communities throughout the world. The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive. Topics include: The theory and design of control systems and components, encompassing: Robust and distributed control using geometric, optimal, stochastic and nonlinear methods Game theory and state estimation Adaptive control, including neural networks, learning, parameter estimation and system fault detection Artificial intelligence, fuzzy and expert systems Hierarchical and man-machine systems All parts of systems engineering which consider the reliability of components and systems Emerging application areas, such as: Robotics Mechatronics Computers for computer-aided design, manufacturing, and control of various industrial processes Space vehicles and aircraft, ships, and traffic Biomedical systems National economies Power systems Agriculture Natural resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信