成纤维细胞生长因子9n143t突变的肘关节滑膜(Eks)突变小鼠的颈椎融合

IF 1.6 4区 医学 Q3 PEDIATRICS
Georgina Djameh, Masayo Harada, Keiichi Akita
{"title":"成纤维细胞生长因子9n143t突变的肘关节滑膜(Eks)突变小鼠的颈椎融合","authors":"Georgina Djameh,&nbsp;Masayo Harada,&nbsp;Keiichi Akita","doi":"10.1111/cga.70016","DOIUrl":null,"url":null,"abstract":"<p>Proper vertebral column development requires precise segmentation and regulated chondrogenesis during embryogenesis. Mutations affecting fibroblast growth factor 9 (FGF9) signaling disrupt these processes, resulting in abnormal vertebral column development. A missense mutation in FGF9 (p.Asn143Thr) produces <i>elbow knee synostosis</i> (<i>Eks</i>)-mutant mice, which display skeletal fusions, including those in the vertebral column, underscoring the essential role of FGF9 in vertebral segmentation and vertebral joint development. However, the mechanisms regulating joint formation in vertebrae remain elusive. Here, we report that the homozygous <i>Eks</i> mutant mice exhibit neural arch lamina fusion along the rostrocaudal axis at the dorsolateral position in neonates. We investigated the cellular and molecular mechanisms underlying the cervical vertebral fusion in <i>Fgf9</i><sup><i>Eks/Eks</i></sup> embryos. <i>Fgf9</i><sup><i>Eks/Eks</i></sup> embryos showed multiple fusions and thickened cartilage of cervical lamina on embryonic day (E) 14.5 and E13.5. Additionally, <i>Fgf9</i><sup><i>Eks/Eks</i></sup> embryos exhibited COL2A1 expression domain expansion accompanied by ectopic chondrocyte accumulation in the presumptive interlaminar space on E12.5 and E11.5. These anomalies persisted through endochondral ossification, leading to postnatal cervical vertebral bone fusion. Ectopic expression of COL2A1, Cyclin D1, and fibroblast growth factor (FGF) signaling target ETV4 was observed in the presumptive interlaminar space, indicating altered cell proliferation and cell fate specification. These findings demonstrate that FGF9<sup><i>Eks</i></sup> protein interferes with vertebral column segmentation by impairing chondrogenic boundary regulation through ectopic cell proliferation and transcriptional activity. In conclusion, ectopic FGF9 signaling leads to cervical vertebral fusion, highlighting its contributing role in maintaining vertebral segmentation and chondrogenesis during embryogenesis.</p>","PeriodicalId":10626,"journal":{"name":"Congenital Anomalies","volume":"65 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cga.70016","citationCount":"0","resultStr":"{\"title\":\"Cervical vertebrae fusion in elbow knee synostosis (Eks)-mutant mice with fibroblast growth factor 9 N143T mutation\",\"authors\":\"Georgina Djameh,&nbsp;Masayo Harada,&nbsp;Keiichi Akita\",\"doi\":\"10.1111/cga.70016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Proper vertebral column development requires precise segmentation and regulated chondrogenesis during embryogenesis. Mutations affecting fibroblast growth factor 9 (FGF9) signaling disrupt these processes, resulting in abnormal vertebral column development. A missense mutation in FGF9 (p.Asn143Thr) produces <i>elbow knee synostosis</i> (<i>Eks</i>)-mutant mice, which display skeletal fusions, including those in the vertebral column, underscoring the essential role of FGF9 in vertebral segmentation and vertebral joint development. However, the mechanisms regulating joint formation in vertebrae remain elusive. Here, we report that the homozygous <i>Eks</i> mutant mice exhibit neural arch lamina fusion along the rostrocaudal axis at the dorsolateral position in neonates. We investigated the cellular and molecular mechanisms underlying the cervical vertebral fusion in <i>Fgf9</i><sup><i>Eks/Eks</i></sup> embryos. <i>Fgf9</i><sup><i>Eks/Eks</i></sup> embryos showed multiple fusions and thickened cartilage of cervical lamina on embryonic day (E) 14.5 and E13.5. Additionally, <i>Fgf9</i><sup><i>Eks/Eks</i></sup> embryos exhibited COL2A1 expression domain expansion accompanied by ectopic chondrocyte accumulation in the presumptive interlaminar space on E12.5 and E11.5. These anomalies persisted through endochondral ossification, leading to postnatal cervical vertebral bone fusion. Ectopic expression of COL2A1, Cyclin D1, and fibroblast growth factor (FGF) signaling target ETV4 was observed in the presumptive interlaminar space, indicating altered cell proliferation and cell fate specification. These findings demonstrate that FGF9<sup><i>Eks</i></sup> protein interferes with vertebral column segmentation by impairing chondrogenic boundary regulation through ectopic cell proliferation and transcriptional activity. In conclusion, ectopic FGF9 signaling leads to cervical vertebral fusion, highlighting its contributing role in maintaining vertebral segmentation and chondrogenesis during embryogenesis.</p>\",\"PeriodicalId\":10626,\"journal\":{\"name\":\"Congenital Anomalies\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cga.70016\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Congenital Anomalies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cga.70016\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Congenital Anomalies","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cga.70016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0

摘要

在胚胎发生过程中,脊柱的正确发育需要精确的分割和规范的软骨形成。影响成纤维细胞生长因子9 (FGF9)信号的突变破坏了这些过程,导致脊柱发育异常。FGF9的错义突变(p.Asn143Thr)产生肘关节滑膜(Eks)突变小鼠,其显示骨骼融合,包括脊柱中的骨骼融合,强调了FGF9在椎体分割和椎关节发育中的重要作用。然而,调节椎骨关节形成的机制仍然难以捉摸。在这里,我们报道了纯合子的Eks突变小鼠在新生儿的背外侧位置沿背侧轴表现出神经弓椎板融合。我们研究了Fgf9Eks/Eks胚胎颈椎融合的细胞和分子机制。Fgf9Eks/Eks胚胎在胚胎日(E) 14.5和E13.5时显示多处融合和颈板软骨增厚。此外,Fgf9Eks/Eks胚胎在E12.5和E11.5上表现出COL2A1表达域扩张,并伴有推测的层间间隙异位软骨细胞积聚。这些异常通过软骨内成骨持续存在,导致出生后颈椎骨融合。COL2A1、Cyclin D1和成纤维细胞生长因子(FGF)信号靶点ETV4的异位表达在推测的层间空间中被观察到,表明细胞增殖和细胞命运规范发生了改变。这些发现表明,FGF9Eks蛋白通过异位细胞增殖和转录活性损害软骨细胞边界调节,从而干扰脊柱分割。总之,异位FGF9信号导致颈椎融合,突出了其在胚胎发生期间维持椎体分割和软骨形成中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cervical vertebrae fusion in elbow knee synostosis (Eks)-mutant mice with fibroblast growth factor 9 N143T mutation

Cervical vertebrae fusion in elbow knee synostosis (Eks)-mutant mice with fibroblast growth factor 9 N143T mutation

Proper vertebral column development requires precise segmentation and regulated chondrogenesis during embryogenesis. Mutations affecting fibroblast growth factor 9 (FGF9) signaling disrupt these processes, resulting in abnormal vertebral column development. A missense mutation in FGF9 (p.Asn143Thr) produces elbow knee synostosis (Eks)-mutant mice, which display skeletal fusions, including those in the vertebral column, underscoring the essential role of FGF9 in vertebral segmentation and vertebral joint development. However, the mechanisms regulating joint formation in vertebrae remain elusive. Here, we report that the homozygous Eks mutant mice exhibit neural arch lamina fusion along the rostrocaudal axis at the dorsolateral position in neonates. We investigated the cellular and molecular mechanisms underlying the cervical vertebral fusion in Fgf9Eks/Eks embryos. Fgf9Eks/Eks embryos showed multiple fusions and thickened cartilage of cervical lamina on embryonic day (E) 14.5 and E13.5. Additionally, Fgf9Eks/Eks embryos exhibited COL2A1 expression domain expansion accompanied by ectopic chondrocyte accumulation in the presumptive interlaminar space on E12.5 and E11.5. These anomalies persisted through endochondral ossification, leading to postnatal cervical vertebral bone fusion. Ectopic expression of COL2A1, Cyclin D1, and fibroblast growth factor (FGF) signaling target ETV4 was observed in the presumptive interlaminar space, indicating altered cell proliferation and cell fate specification. These findings demonstrate that FGF9Eks protein interferes with vertebral column segmentation by impairing chondrogenic boundary regulation through ectopic cell proliferation and transcriptional activity. In conclusion, ectopic FGF9 signaling leads to cervical vertebral fusion, highlighting its contributing role in maintaining vertebral segmentation and chondrogenesis during embryogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Congenital Anomalies
Congenital Anomalies PEDIATRICS-
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Congenital Anomalies is the official English language journal of the Japanese Teratology Society, and publishes original articles in laboratory as well as clinical research in all areas of abnormal development and related fields, from all over the world. Although contributions by members of the teratology societies affiliated with The International Federation of Teratology Societies are given priority, contributions from non-members are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信