Junfei Zhang , Huisheng Cheng , Ninghui Sun , Zehui Huo , Junlin Chen
{"title":"用于评估三元地聚合物强度的可解释机器学习模型","authors":"Junfei Zhang , Huisheng Cheng , Ninghui Sun , Zehui Huo , Junlin Chen","doi":"10.1016/j.aiig.2025.100128","DOIUrl":null,"url":null,"abstract":"<div><div>Ternary geopolymers incorporating multiple solid wastes such as steel slag (SS), fly ash (FA), and granulated blast furnace slag (GBFS) are considered environmentally friendly and exhibit enhanced performance. However, the mechanisms governing strength development and the design of optimal mixtures are not fully understood due to the complexity of their components. This study presents the development of four machine learning models—Artificial Neural Network (ANN), Support Vector Regression (SVR), Extremely Randomized Tree (ERT), and Gradient Boosting Regression (GBR)—for predicting the unconfined compressive strength (UCS) of ternary geopolymers. The models were trained using a dataset comprising 120 mixtures derived from laboratory tests. Shapley Additive Explanations analysis was employed to interpret the machine learning models and elucidate the influence of different components on the properties of ternary geopolymers. The results indicate that ANN exhibits the highest predictive accuracy for UCS (R = 0.949). Furthermore, the UCS of ternary geopolymers is most sensitive to the content of GBFS. This study provides valuable insights for optimizing the mix proportions in ternary blended geopolymer mixtures.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 2","pages":"Article 100128"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable machine learning models for evaluating strength of ternary geopolymers\",\"authors\":\"Junfei Zhang , Huisheng Cheng , Ninghui Sun , Zehui Huo , Junlin Chen\",\"doi\":\"10.1016/j.aiig.2025.100128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ternary geopolymers incorporating multiple solid wastes such as steel slag (SS), fly ash (FA), and granulated blast furnace slag (GBFS) are considered environmentally friendly and exhibit enhanced performance. However, the mechanisms governing strength development and the design of optimal mixtures are not fully understood due to the complexity of their components. This study presents the development of four machine learning models—Artificial Neural Network (ANN), Support Vector Regression (SVR), Extremely Randomized Tree (ERT), and Gradient Boosting Regression (GBR)—for predicting the unconfined compressive strength (UCS) of ternary geopolymers. The models were trained using a dataset comprising 120 mixtures derived from laboratory tests. Shapley Additive Explanations analysis was employed to interpret the machine learning models and elucidate the influence of different components on the properties of ternary geopolymers. The results indicate that ANN exhibits the highest predictive accuracy for UCS (R = 0.949). Furthermore, the UCS of ternary geopolymers is most sensitive to the content of GBFS. This study provides valuable insights for optimizing the mix proportions in ternary blended geopolymer mixtures.</div></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"6 2\",\"pages\":\"Article 100128\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544125000243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544125000243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interpretable machine learning models for evaluating strength of ternary geopolymers
Ternary geopolymers incorporating multiple solid wastes such as steel slag (SS), fly ash (FA), and granulated blast furnace slag (GBFS) are considered environmentally friendly and exhibit enhanced performance. However, the mechanisms governing strength development and the design of optimal mixtures are not fully understood due to the complexity of their components. This study presents the development of four machine learning models—Artificial Neural Network (ANN), Support Vector Regression (SVR), Extremely Randomized Tree (ERT), and Gradient Boosting Regression (GBR)—for predicting the unconfined compressive strength (UCS) of ternary geopolymers. The models were trained using a dataset comprising 120 mixtures derived from laboratory tests. Shapley Additive Explanations analysis was employed to interpret the machine learning models and elucidate the influence of different components on the properties of ternary geopolymers. The results indicate that ANN exhibits the highest predictive accuracy for UCS (R = 0.949). Furthermore, the UCS of ternary geopolymers is most sensitive to the content of GBFS. This study provides valuable insights for optimizing the mix proportions in ternary blended geopolymer mixtures.