{"title":"基于项目反应理论的算法组合分析R模块","authors":"Brodie Oldfield , Sevvandi Kandanaarachchi , Ziqi Xu , Mario Andrés Muñoz","doi":"10.1016/j.softx.2025.102239","DOIUrl":null,"url":null,"abstract":"<div><div>Experimental evaluation is crucial in AI research, especially for assessing algorithms across diverse tasks. Many studies often evaluate a limited set of algorithms, failing to fully understand their strengths and weaknesses within a comprehensive portfolio. This paper introduces an Item Response Theory (IRT) based analysis tool for algorithm portfolio evaluation called AIRT-Module. Traditionally used in educational psychometrics, IRT models test question difficulty and student ability using responses to test questions. Adapting IRT to algorithm evaluation, the AIRT-Module contains a Shiny web application and the R package <span>airt</span>. AIRT-Module uses algorithm performance measures to compute anomalousness, consistency, and difficulty limits for an algorithm and the difficulty of test instances. The strengths and weaknesses of algorithms are visualised using the difficulty spectrum of the test instances. AIRT-Module offers a detailed understanding of algorithm capabilities across varied test instances, thus enhancing comprehensive AI method assessment. It is available at <span><span>https://sevvandi.shinyapps.io/AIRT/</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"31 ","pages":"Article 102239"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Item Response Theory-based R module for Algorithm Portfolio Analysis\",\"authors\":\"Brodie Oldfield , Sevvandi Kandanaarachchi , Ziqi Xu , Mario Andrés Muñoz\",\"doi\":\"10.1016/j.softx.2025.102239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Experimental evaluation is crucial in AI research, especially for assessing algorithms across diverse tasks. Many studies often evaluate a limited set of algorithms, failing to fully understand their strengths and weaknesses within a comprehensive portfolio. This paper introduces an Item Response Theory (IRT) based analysis tool for algorithm portfolio evaluation called AIRT-Module. Traditionally used in educational psychometrics, IRT models test question difficulty and student ability using responses to test questions. Adapting IRT to algorithm evaluation, the AIRT-Module contains a Shiny web application and the R package <span>airt</span>. AIRT-Module uses algorithm performance measures to compute anomalousness, consistency, and difficulty limits for an algorithm and the difficulty of test instances. The strengths and weaknesses of algorithms are visualised using the difficulty spectrum of the test instances. AIRT-Module offers a detailed understanding of algorithm capabilities across varied test instances, thus enhancing comprehensive AI method assessment. It is available at <span><span>https://sevvandi.shinyapps.io/AIRT/</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":21905,\"journal\":{\"name\":\"SoftwareX\",\"volume\":\"31 \",\"pages\":\"Article 102239\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SoftwareX\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352711025002067\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711025002067","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
An Item Response Theory-based R module for Algorithm Portfolio Analysis
Experimental evaluation is crucial in AI research, especially for assessing algorithms across diverse tasks. Many studies often evaluate a limited set of algorithms, failing to fully understand their strengths and weaknesses within a comprehensive portfolio. This paper introduces an Item Response Theory (IRT) based analysis tool for algorithm portfolio evaluation called AIRT-Module. Traditionally used in educational psychometrics, IRT models test question difficulty and student ability using responses to test questions. Adapting IRT to algorithm evaluation, the AIRT-Module contains a Shiny web application and the R package airt. AIRT-Module uses algorithm performance measures to compute anomalousness, consistency, and difficulty limits for an algorithm and the difficulty of test instances. The strengths and weaknesses of algorithms are visualised using the difficulty spectrum of the test instances. AIRT-Module offers a detailed understanding of algorithm capabilities across varied test instances, thus enhancing comprehensive AI method assessment. It is available at https://sevvandi.shinyapps.io/AIRT/.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.