BCC高温合金的计算研究

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Taiwu Yu , Liang Qi , Shiddhartha Ramprakash , Yunzhi Wang
{"title":"BCC高温合金的计算研究","authors":"Taiwu Yu ,&nbsp;Liang Qi ,&nbsp;Shiddhartha Ramprakash ,&nbsp;Yunzhi Wang","doi":"10.1016/j.scriptamat.2025.116804","DOIUrl":null,"url":null,"abstract":"<div><div>While face-centered cubic (FCC) superalloys have been extensively engineered and optimized, their performance is fundamentally limited by the solvus temperatures of key coherent strengthening precipitates. In contrast, body-centered cubic (BCC) superalloys offer the potential to significantly raise the solvus temperature by incorporating refractory elements. However, the widespread adoption requires overcoming critical challenges, including poor room-temperature ductility, limited creep resistance, and inadequate oxidation performance, which necessitates new alloy design and microstructure optimization. Given the inherent complexity of multicomponent systems, computational tools play a vital role in guiding experimental efforts by screening the massive compositional space in search for potentially ductile BCC and B2 solid solutions, mapping the intricate free-energy landscapes across a high-dimensional space of compositional and processing variables in search for transformation pathways leading to desired microstructures. This viewpoint article summarizes state-of-the-art in computational design of BCC superalloys, and outlines promising future directions in this rapidly evolving field.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"267 ","pages":"Article 116804"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational studies on BCC superalloys\",\"authors\":\"Taiwu Yu ,&nbsp;Liang Qi ,&nbsp;Shiddhartha Ramprakash ,&nbsp;Yunzhi Wang\",\"doi\":\"10.1016/j.scriptamat.2025.116804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While face-centered cubic (FCC) superalloys have been extensively engineered and optimized, their performance is fundamentally limited by the solvus temperatures of key coherent strengthening precipitates. In contrast, body-centered cubic (BCC) superalloys offer the potential to significantly raise the solvus temperature by incorporating refractory elements. However, the widespread adoption requires overcoming critical challenges, including poor room-temperature ductility, limited creep resistance, and inadequate oxidation performance, which necessitates new alloy design and microstructure optimization. Given the inherent complexity of multicomponent systems, computational tools play a vital role in guiding experimental efforts by screening the massive compositional space in search for potentially ductile BCC and B2 solid solutions, mapping the intricate free-energy landscapes across a high-dimensional space of compositional and processing variables in search for transformation pathways leading to desired microstructures. This viewpoint article summarizes state-of-the-art in computational design of BCC superalloys, and outlines promising future directions in this rapidly evolving field.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"267 \",\"pages\":\"Article 116804\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646225002672\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225002672","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

虽然面心立方(FCC)高温合金已经得到了广泛的设计和优化,但其性能从根本上受到关键相干强化析出相的溶剂温度的限制。相比之下,体心立方(BCC)高温合金通过加入耐火元素,提供了显著提高溶剂温度的潜力。然而,合金的广泛应用需要克服一些关键的挑战,包括室温延展性差、抗蠕变能力有限和氧化性能不佳,这就需要新的合金设计和微观结构优化。考虑到多组分系统固有的复杂性,计算工具在指导实验工作中发挥着至关重要的作用,通过筛选大量的组成空间来寻找潜在的韧性BCC和B2固溶体,在组成和加工变量的高维空间中绘制复杂的自由能景观,以寻找导致所需微观结构的转化途径。本文总结了BCC高温合金计算设计的最新进展,并概述了这一快速发展领域的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational studies on BCC superalloys
While face-centered cubic (FCC) superalloys have been extensively engineered and optimized, their performance is fundamentally limited by the solvus temperatures of key coherent strengthening precipitates. In contrast, body-centered cubic (BCC) superalloys offer the potential to significantly raise the solvus temperature by incorporating refractory elements. However, the widespread adoption requires overcoming critical challenges, including poor room-temperature ductility, limited creep resistance, and inadequate oxidation performance, which necessitates new alloy design and microstructure optimization. Given the inherent complexity of multicomponent systems, computational tools play a vital role in guiding experimental efforts by screening the massive compositional space in search for potentially ductile BCC and B2 solid solutions, mapping the intricate free-energy landscapes across a high-dimensional space of compositional and processing variables in search for transformation pathways leading to desired microstructures. This viewpoint article summarizes state-of-the-art in computational design of BCC superalloys, and outlines promising future directions in this rapidly evolving field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信