从未知中提炼出确定性

IF 18.6
Zhilin Zhao;Longbing Cao;Yixuan Zhang;Kun-Yu Lin;Wei-Shi Zheng
{"title":"从未知中提炼出确定性","authors":"Zhilin Zhao;Longbing Cao;Yixuan Zhang;Kun-Yu Lin;Wei-Shi Zheng","doi":"10.1109/TPAMI.2025.3584386","DOIUrl":null,"url":null,"abstract":"Out-of-distribution (OOD) detection is critical for identifying test samples that deviate from in-distribution (ID) data, ensuring network robustness and reliability. This paper presents a flexible framework for OOD knowledge distillation that extracts OOD-sensitive information from a network to develop a binary classifier capable of distinguishing between ID and OOD samples in both scenarios, with and without access to training ID data. To accomplish this, we introduce Confidence Amendment (CA), an innovative methodology that transforms an OOD sample into an ID one while progressively amending prediction confidence derived from the network to enhance OOD sensitivity. This approach enables the simultaneous synthesis of both ID and OOD samples, each accompanied by an adjusted prediction confidence, thereby facilitating the training of a binary classifier sensitive to OOD. Theoretical analysis provides bounds on the generalization error of the binary classifier, demonstrating the pivotal role of confidence amendment in enhancing OOD sensitivity. Extensive experiments spanning various datasets and network architectures confirm the efficacy of the proposed method in detecting OOD samples.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 10","pages":"9232-9249"},"PeriodicalIF":18.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distilling the Unknown to Unveil Certainty\",\"authors\":\"Zhilin Zhao;Longbing Cao;Yixuan Zhang;Kun-Yu Lin;Wei-Shi Zheng\",\"doi\":\"10.1109/TPAMI.2025.3584386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Out-of-distribution (OOD) detection is critical for identifying test samples that deviate from in-distribution (ID) data, ensuring network robustness and reliability. This paper presents a flexible framework for OOD knowledge distillation that extracts OOD-sensitive information from a network to develop a binary classifier capable of distinguishing between ID and OOD samples in both scenarios, with and without access to training ID data. To accomplish this, we introduce Confidence Amendment (CA), an innovative methodology that transforms an OOD sample into an ID one while progressively amending prediction confidence derived from the network to enhance OOD sensitivity. This approach enables the simultaneous synthesis of both ID and OOD samples, each accompanied by an adjusted prediction confidence, thereby facilitating the training of a binary classifier sensitive to OOD. Theoretical analysis provides bounds on the generalization error of the binary classifier, demonstrating the pivotal role of confidence amendment in enhancing OOD sensitivity. Extensive experiments spanning various datasets and network architectures confirm the efficacy of the proposed method in detecting OOD samples.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 10\",\"pages\":\"9232-9249\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11059808/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11059808/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分布外(OOD)检测对于识别偏离分布内(ID)数据的测试样本,确保网络的鲁棒性和可靠性至关重要。本文提出了一个灵活的OOD知识蒸馏框架,该框架从网络中提取OOD敏感信息,以开发能够在两种情况下区分ID和OOD样本的二元分类器,无论是否访问训练ID数据。为了实现这一目标,我们引入了置信度修正(CA),这是一种创新的方法,它将OOD样本转换为ID样本,同时逐步修正来自网络的预测置信度,以提高OOD灵敏度。这种方法能够同时合成ID和OOD样本,每个样本都伴随着调整的预测置信度,从而促进对OOD敏感的二分类器的训练。理论分析给出了二值分类器泛化误差的界限,证明了置信度修正在提高OOD灵敏度方面的关键作用。跨越各种数据集和网络架构的大量实验证实了该方法在检测OOD样本方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distilling the Unknown to Unveil Certainty
Out-of-distribution (OOD) detection is critical for identifying test samples that deviate from in-distribution (ID) data, ensuring network robustness and reliability. This paper presents a flexible framework for OOD knowledge distillation that extracts OOD-sensitive information from a network to develop a binary classifier capable of distinguishing between ID and OOD samples in both scenarios, with and without access to training ID data. To accomplish this, we introduce Confidence Amendment (CA), an innovative methodology that transforms an OOD sample into an ID one while progressively amending prediction confidence derived from the network to enhance OOD sensitivity. This approach enables the simultaneous synthesis of both ID and OOD samples, each accompanied by an adjusted prediction confidence, thereby facilitating the training of a binary classifier sensitive to OOD. Theoretical analysis provides bounds on the generalization error of the binary classifier, demonstrating the pivotal role of confidence amendment in enhancing OOD sensitivity. Extensive experiments spanning various datasets and network architectures confirm the efficacy of the proposed method in detecting OOD samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信