通过细粒度协同计算加速私有大型变压器推理

IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Yuntian Chen;Zhanyong Tang;Tianpei Lu;Bingsheng Zhang;Zhiying Shi;Zheng Wang
{"title":"通过细粒度协同计算加速私有大型变压器推理","authors":"Yuntian Chen;Zhanyong Tang;Tianpei Lu;Bingsheng Zhang;Zhiying Shi;Zheng Wang","doi":"10.1109/TIFS.2025.3584639","DOIUrl":null,"url":null,"abstract":"Homomorphic encryption (HE) and secret sharing (SS) enable computations on encrypted data, providing significant privacy benefits for large transformer-based models (TBM) in sensitive sectors like medicine and finance. However, private TBM inference incurs significant costs due to the coarse-grained application of HE and SS. We present <sc>FASTLMPI</small>, a new approach to accelerate private TBM inference through fine-grained computation optimization. Specifically, through the fine-grained co-design of homomorphic encryption and secret sharing, <sc>FASTLMPI</small> achieves efficient protocols for matrix multiplication, SoftMax, LayerNorm, and GeLU. In addition, <sc>FASTLMPI</small> introduces a precise segmented approximation technique for differentiable non-linear functions, improving its fitting accuracy while maintaining a low polynomial degree. Compared to solution BOLT (S&P’24), <sc>FASTLMPI</small> shows a remarkable 25.1% to 55.3% decrease in runtime and an impressive 39.0% reduction in communication costs.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"7482-7497"},"PeriodicalIF":8.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating Private Large Transformers Inference Through Fine-Grained Collaborative Computation\",\"authors\":\"Yuntian Chen;Zhanyong Tang;Tianpei Lu;Bingsheng Zhang;Zhiying Shi;Zheng Wang\",\"doi\":\"10.1109/TIFS.2025.3584639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Homomorphic encryption (HE) and secret sharing (SS) enable computations on encrypted data, providing significant privacy benefits for large transformer-based models (TBM) in sensitive sectors like medicine and finance. However, private TBM inference incurs significant costs due to the coarse-grained application of HE and SS. We present <sc>FASTLMPI</small>, a new approach to accelerate private TBM inference through fine-grained computation optimization. Specifically, through the fine-grained co-design of homomorphic encryption and secret sharing, <sc>FASTLMPI</small> achieves efficient protocols for matrix multiplication, SoftMax, LayerNorm, and GeLU. In addition, <sc>FASTLMPI</small> introduces a precise segmented approximation technique for differentiable non-linear functions, improving its fitting accuracy while maintaining a low polynomial degree. Compared to solution BOLT (S&P’24), <sc>FASTLMPI</small> shows a remarkable 25.1% to 55.3% decrease in runtime and an impressive 39.0% reduction in communication costs.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"7482-7497\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11059953/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11059953/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

同态加密(HE)和秘密共享(SS)支持对加密数据进行计算,为医疗和金融等敏感领域的大型基于变压器的模型(TBM)提供了显著的隐私优势。然而,由于HE和SS的粗粒度应用,私有TBM推理产生了巨大的成本。我们提出了一种通过细粒度计算优化加速私有TBM推理的新方法FASTLMPI。具体来说,通过同态加密和秘密共享的细粒度协同设计,FASTLMPI实现了矩阵乘法、SoftMax、LayerNorm和GeLU的高效协议。此外,FASTLMPI引入了对可微非线性函数的精确分段逼近技术,在保持低多项式度的同时提高了拟合精度。与解决方案BOLT (S&P’24)相比,FASTLMPI的运行时间降低了25.1%至55.3%,通信成本降低了39.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating Private Large Transformers Inference Through Fine-Grained Collaborative Computation
Homomorphic encryption (HE) and secret sharing (SS) enable computations on encrypted data, providing significant privacy benefits for large transformer-based models (TBM) in sensitive sectors like medicine and finance. However, private TBM inference incurs significant costs due to the coarse-grained application of HE and SS. We present FASTLMPI, a new approach to accelerate private TBM inference through fine-grained computation optimization. Specifically, through the fine-grained co-design of homomorphic encryption and secret sharing, FASTLMPI achieves efficient protocols for matrix multiplication, SoftMax, LayerNorm, and GeLU. In addition, FASTLMPI introduces a precise segmented approximation technique for differentiable non-linear functions, improving its fitting accuracy while maintaining a low polynomial degree. Compared to solution BOLT (S&P’24), FASTLMPI shows a remarkable 25.1% to 55.3% decrease in runtime and an impressive 39.0% reduction in communication costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信