基于改进金鹰优化算法的车辆边缘计算节能卸载方案

IF 2.5 4区 计算机科学 Q3 TELECOMMUNICATIONS
S. Syed Abuthahir, J. Selvin Paul Peter
{"title":"基于改进金鹰优化算法的车辆边缘计算节能卸载方案","authors":"S. Syed Abuthahir,&nbsp;J. Selvin Paul Peter","doi":"10.1002/ett.70191","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The increasing processing demands of vehicle applications pose a major challenge for the Internet of Vehicles (IoVs). Multi-access edge computing (MEC) offloads computation-intensive activities to edge servers, significantly enhancing computing capacity and extending vehicle battery life. Nevertheless, traditional offloading strategies fail to effectively balance computation tasks among vehicles and edge servers, resulting in suboptimal resource utilization and increased energy consumption. Therefore, an Energy-Efficient Computation Offloading Scheme for Vehicular Edge Computing utilizing Improved Golden Eagle Optimization Algorithm (EECO-VEC-IGEOA) is proposed. An Improved Golden Eagle Optimization Algorithm (IGEOA) is designed to optimize energy-efficient computation offloading in vehicular edge computing networks (VECN). By dynamically allocating computation tasks between vehicles and edge servers depending on real-time conditions, the EECO-VEC-IGEOA model aims to improve overall network performance and energy efficiency. The EECO-VEC-IGEOA method reduces energy consumption by 14.62%, 16.84%, and 19.16%, and task completion time by 15.84%, 18.92%, and 20.69% compared to the existing approaches.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 7","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient Computation Offloading Scheme for Vehicular Edge Computing Using Improved Golden Eagle Optimization Algorithm\",\"authors\":\"S. Syed Abuthahir,&nbsp;J. Selvin Paul Peter\",\"doi\":\"10.1002/ett.70191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The increasing processing demands of vehicle applications pose a major challenge for the Internet of Vehicles (IoVs). Multi-access edge computing (MEC) offloads computation-intensive activities to edge servers, significantly enhancing computing capacity and extending vehicle battery life. Nevertheless, traditional offloading strategies fail to effectively balance computation tasks among vehicles and edge servers, resulting in suboptimal resource utilization and increased energy consumption. Therefore, an Energy-Efficient Computation Offloading Scheme for Vehicular Edge Computing utilizing Improved Golden Eagle Optimization Algorithm (EECO-VEC-IGEOA) is proposed. An Improved Golden Eagle Optimization Algorithm (IGEOA) is designed to optimize energy-efficient computation offloading in vehicular edge computing networks (VECN). By dynamically allocating computation tasks between vehicles and edge servers depending on real-time conditions, the EECO-VEC-IGEOA model aims to improve overall network performance and energy efficiency. The EECO-VEC-IGEOA method reduces energy consumption by 14.62%, 16.84%, and 19.16%, and task completion time by 15.84%, 18.92%, and 20.69% compared to the existing approaches.</p>\\n </div>\",\"PeriodicalId\":23282,\"journal\":{\"name\":\"Transactions on Emerging Telecommunications Technologies\",\"volume\":\"36 7\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Emerging Telecommunications Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ett.70191\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70191","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

车辆应用日益增长的处理需求对车联网(iov)提出了重大挑战。多访问边缘计算(MEC)将计算密集型活动卸载到边缘服务器上,显著提高了计算能力并延长了汽车电池寿命。然而,传统的卸载策略不能有效地平衡车辆和边缘服务器之间的计算任务,导致资源利用率不理想,能源消耗增加。为此,提出了一种基于改进金鹰优化算法(EECO-VEC-IGEOA)的汽车边缘计算节能卸载方案。为了优化车辆边缘计算网络(VECN)中节能的计算卸载,设计了一种改进的金鹰优化算法(IGEOA)。通过根据实时情况在车辆和边缘服务器之间动态分配计算任务,EECO-VEC-IGEOA模型旨在提高整体网络性能和能源效率。与现有方法相比,EECO-VEC-IGEOA方法的能耗分别降低14.62%、16.84%和19.16%,任务完成时间分别降低15.84%、18.92%和20.69%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Energy-Efficient Computation Offloading Scheme for Vehicular Edge Computing Using Improved Golden Eagle Optimization Algorithm

Energy-Efficient Computation Offloading Scheme for Vehicular Edge Computing Using Improved Golden Eagle Optimization Algorithm

The increasing processing demands of vehicle applications pose a major challenge for the Internet of Vehicles (IoVs). Multi-access edge computing (MEC) offloads computation-intensive activities to edge servers, significantly enhancing computing capacity and extending vehicle battery life. Nevertheless, traditional offloading strategies fail to effectively balance computation tasks among vehicles and edge servers, resulting in suboptimal resource utilization and increased energy consumption. Therefore, an Energy-Efficient Computation Offloading Scheme for Vehicular Edge Computing utilizing Improved Golden Eagle Optimization Algorithm (EECO-VEC-IGEOA) is proposed. An Improved Golden Eagle Optimization Algorithm (IGEOA) is designed to optimize energy-efficient computation offloading in vehicular edge computing networks (VECN). By dynamically allocating computation tasks between vehicles and edge servers depending on real-time conditions, the EECO-VEC-IGEOA model aims to improve overall network performance and energy efficiency. The EECO-VEC-IGEOA method reduces energy consumption by 14.62%, 16.84%, and 19.16%, and task completion time by 15.84%, 18.92%, and 20.69% compared to the existing approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
13.90%
发文量
249
期刊介绍: ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims: - to attract cutting-edge publications from leading researchers and research groups around the world - to become a highly cited source of timely research findings in emerging fields of telecommunications - to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish - to become the leading journal for publishing the latest developments in telecommunications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信