Marc-Ricard Batten , Josep Antoni Gutiérrez-Orgaz , Fernando Eduardo Maturi , Luís Dias Carlos , Helena Oliveira , Jordi Hernando , Fernando Novio , Antonio Rodríguez-Diéguez , Mercè Capdevila , Òscar Palacios , Pau Bayón
{"title":"Pt(II)非氧化还原依赖性上转换平台的近红外活化研究","authors":"Marc-Ricard Batten , Josep Antoni Gutiérrez-Orgaz , Fernando Eduardo Maturi , Luís Dias Carlos , Helena Oliveira , Jordi Hernando , Fernando Novio , Antonio Rodríguez-Diéguez , Mercè Capdevila , Òscar Palacios , Pau Bayón","doi":"10.1016/j.jinorgbio.2025.112982","DOIUrl":null,"url":null,"abstract":"<div><div>Upconversion nanoparticles (UCNPs) are a class of interesting nanomaterials with unique multi-photon excitation photoluminescence properties, and they have been intensively explored as novel contrast agents for biomedical imaging and drug delivery. The development of photoinduced drug-release devices has been intensively developed in the last years, specially using UCNPs due to their properties to absorb single-band near infrared (NIR) light and subsequently emit high-energy UV-to-visible light which could photoactivate several prodrugs. Some examples of Pt(II) release have been described, all of them from Pt(IV) complexes taking advantage of the Pt(IV)/(II) redox couple. In this work, NIR light-responsive LiYF<sub>4</sub>:Yb/Tm UCNPs are presented as carrier systems to exert photoinduced Pt(II) drug release. For this, the surface of UCNPs were coated with an amphiphilic polymer to convert hydrophobic nanoparticles into hydrophilic and to load novel Pt(II) complexes. It is demonstrated that NIR radiation-induced Pt(II) drug release can be achieved without the need to use the Pt(IV)/(II) redox couple as a trigger. In this way, under NIR excitation, UCNPs can transform NIR irradiation into UV radiation which causes direct Pt(II) drug release in a spatial and temporal control manner. The release process has been monitored in real-time. Two platforms containing two different Pt(II) complexes have been studied, both showing similar results in terms of the enhancement of toxicity caused by the increase in Pt(II) concentration. Furthermore, a significant improvement of cytotoxicity against melanoma A375 cells was observed after irradiation of these platforms, confirming the feasibility of the proposed upconversion process to release Pt(II).</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"271 ","pages":"Article 112982"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-infrared activation of upconversion platforms for non-redox-dependent release of Pt(II)\",\"authors\":\"Marc-Ricard Batten , Josep Antoni Gutiérrez-Orgaz , Fernando Eduardo Maturi , Luís Dias Carlos , Helena Oliveira , Jordi Hernando , Fernando Novio , Antonio Rodríguez-Diéguez , Mercè Capdevila , Òscar Palacios , Pau Bayón\",\"doi\":\"10.1016/j.jinorgbio.2025.112982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Upconversion nanoparticles (UCNPs) are a class of interesting nanomaterials with unique multi-photon excitation photoluminescence properties, and they have been intensively explored as novel contrast agents for biomedical imaging and drug delivery. The development of photoinduced drug-release devices has been intensively developed in the last years, specially using UCNPs due to their properties to absorb single-band near infrared (NIR) light and subsequently emit high-energy UV-to-visible light which could photoactivate several prodrugs. Some examples of Pt(II) release have been described, all of them from Pt(IV) complexes taking advantage of the Pt(IV)/(II) redox couple. In this work, NIR light-responsive LiYF<sub>4</sub>:Yb/Tm UCNPs are presented as carrier systems to exert photoinduced Pt(II) drug release. For this, the surface of UCNPs were coated with an amphiphilic polymer to convert hydrophobic nanoparticles into hydrophilic and to load novel Pt(II) complexes. It is demonstrated that NIR radiation-induced Pt(II) drug release can be achieved without the need to use the Pt(IV)/(II) redox couple as a trigger. In this way, under NIR excitation, UCNPs can transform NIR irradiation into UV radiation which causes direct Pt(II) drug release in a spatial and temporal control manner. The release process has been monitored in real-time. Two platforms containing two different Pt(II) complexes have been studied, both showing similar results in terms of the enhancement of toxicity caused by the increase in Pt(II) concentration. Furthermore, a significant improvement of cytotoxicity against melanoma A375 cells was observed after irradiation of these platforms, confirming the feasibility of the proposed upconversion process to release Pt(II).</div></div>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":\"271 \",\"pages\":\"Article 112982\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016201342500162X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016201342500162X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Near-infrared activation of upconversion platforms for non-redox-dependent release of Pt(II)
Upconversion nanoparticles (UCNPs) are a class of interesting nanomaterials with unique multi-photon excitation photoluminescence properties, and they have been intensively explored as novel contrast agents for biomedical imaging and drug delivery. The development of photoinduced drug-release devices has been intensively developed in the last years, specially using UCNPs due to their properties to absorb single-band near infrared (NIR) light and subsequently emit high-energy UV-to-visible light which could photoactivate several prodrugs. Some examples of Pt(II) release have been described, all of them from Pt(IV) complexes taking advantage of the Pt(IV)/(II) redox couple. In this work, NIR light-responsive LiYF4:Yb/Tm UCNPs are presented as carrier systems to exert photoinduced Pt(II) drug release. For this, the surface of UCNPs were coated with an amphiphilic polymer to convert hydrophobic nanoparticles into hydrophilic and to load novel Pt(II) complexes. It is demonstrated that NIR radiation-induced Pt(II) drug release can be achieved without the need to use the Pt(IV)/(II) redox couple as a trigger. In this way, under NIR excitation, UCNPs can transform NIR irradiation into UV radiation which causes direct Pt(II) drug release in a spatial and temporal control manner. The release process has been monitored in real-time. Two platforms containing two different Pt(II) complexes have been studied, both showing similar results in terms of the enhancement of toxicity caused by the increase in Pt(II) concentration. Furthermore, a significant improvement of cytotoxicity against melanoma A375 cells was observed after irradiation of these platforms, confirming the feasibility of the proposed upconversion process to release Pt(II).
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.