Ahmed Mohammed Ahmed Alsarori, Mohd Herwan Sulaiman
{"title":"集成深度学习用于心血管风险评估和诊断:一种进化匹配算法增强的CNN-LSTM","authors":"Ahmed Mohammed Ahmed Alsarori, Mohd Herwan Sulaiman","doi":"10.1016/j.mex.2025.103466","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide, emphasizing the urgent need for accurate and efficient predictive models. This study proposes a dual-output deep learning model based on a hybrid Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model, optimized using the Evolutionary Mating Algorithm (EMA). The model predicts both a continuous risk score and a binary diagnostic outcome, supporting both quantitative assessment and early clinical decision-making. EMA was applied for hyperparameter optimization, demonstrating improved convergence and generalization over conventional methods. Performance was benchmarked against CNN-LSTM models optimized using Particle Swarm Optimization (PSO) and Barnacle Mating Optimization (BMO). The EMA-based model achieved superior results, with a Mean Absolute Error (MAE) of 0.018, Mean Squared Error (MSE) of 0.0006, Root Mean Squared Error (RMSE) of 0.024, and a coefficient of determination (R²) of 0.98 for risk prediction. For the diagnostic task, the model attained 70 % accuracy and 80 % precision. These findings validate EMA’s effectiveness in tuning dual-output deep learning models and highlight its potential in enhancing cardiovascular risk stratification and early diagnosis in clinical settings.<ul><li><span>•</span><span><div>Dual-output CNN-LSTM model optimized using EMA.</div></span></li><li><span>•</span><span><div>Continuous risk scores and binary diagnostic classification predictions.</div></span></li><li><span>•</span><span><div>EMA outperformed PSO and BMO in predictive accuracy and model robustness.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103466"},"PeriodicalIF":1.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated deep learning for cardiovascular risk assessment and diagnosis: An evolutionary mating algorithm-enhanced CNN-LSTM\",\"authors\":\"Ahmed Mohammed Ahmed Alsarori, Mohd Herwan Sulaiman\",\"doi\":\"10.1016/j.mex.2025.103466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide, emphasizing the urgent need for accurate and efficient predictive models. This study proposes a dual-output deep learning model based on a hybrid Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model, optimized using the Evolutionary Mating Algorithm (EMA). The model predicts both a continuous risk score and a binary diagnostic outcome, supporting both quantitative assessment and early clinical decision-making. EMA was applied for hyperparameter optimization, demonstrating improved convergence and generalization over conventional methods. Performance was benchmarked against CNN-LSTM models optimized using Particle Swarm Optimization (PSO) and Barnacle Mating Optimization (BMO). The EMA-based model achieved superior results, with a Mean Absolute Error (MAE) of 0.018, Mean Squared Error (MSE) of 0.0006, Root Mean Squared Error (RMSE) of 0.024, and a coefficient of determination (R²) of 0.98 for risk prediction. For the diagnostic task, the model attained 70 % accuracy and 80 % precision. These findings validate EMA’s effectiveness in tuning dual-output deep learning models and highlight its potential in enhancing cardiovascular risk stratification and early diagnosis in clinical settings.<ul><li><span>•</span><span><div>Dual-output CNN-LSTM model optimized using EMA.</div></span></li><li><span>•</span><span><div>Continuous risk scores and binary diagnostic classification predictions.</div></span></li><li><span>•</span><span><div>EMA outperformed PSO and BMO in predictive accuracy and model robustness.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"15 \",\"pages\":\"Article 103466\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125003115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125003115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Integrated deep learning for cardiovascular risk assessment and diagnosis: An evolutionary mating algorithm-enhanced CNN-LSTM
Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide, emphasizing the urgent need for accurate and efficient predictive models. This study proposes a dual-output deep learning model based on a hybrid Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model, optimized using the Evolutionary Mating Algorithm (EMA). The model predicts both a continuous risk score and a binary diagnostic outcome, supporting both quantitative assessment and early clinical decision-making. EMA was applied for hyperparameter optimization, demonstrating improved convergence and generalization over conventional methods. Performance was benchmarked against CNN-LSTM models optimized using Particle Swarm Optimization (PSO) and Barnacle Mating Optimization (BMO). The EMA-based model achieved superior results, with a Mean Absolute Error (MAE) of 0.018, Mean Squared Error (MSE) of 0.0006, Root Mean Squared Error (RMSE) of 0.024, and a coefficient of determination (R²) of 0.98 for risk prediction. For the diagnostic task, the model attained 70 % accuracy and 80 % precision. These findings validate EMA’s effectiveness in tuning dual-output deep learning models and highlight its potential in enhancing cardiovascular risk stratification and early diagnosis in clinical settings.
•
Dual-output CNN-LSTM model optimized using EMA.
•
Continuous risk scores and binary diagnostic classification predictions.
•
EMA outperformed PSO and BMO in predictive accuracy and model robustness.