集成深度学习用于心血管风险评估和诊断:一种进化匹配算法增强的CNN-LSTM

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-06-27 DOI:10.1016/j.mex.2025.103466
Ahmed Mohammed Ahmed Alsarori, Mohd Herwan Sulaiman
{"title":"集成深度学习用于心血管风险评估和诊断:一种进化匹配算法增强的CNN-LSTM","authors":"Ahmed Mohammed Ahmed Alsarori,&nbsp;Mohd Herwan Sulaiman","doi":"10.1016/j.mex.2025.103466","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide, emphasizing the urgent need for accurate and efficient predictive models. This study proposes a dual-output deep learning model based on a hybrid Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model, optimized using the Evolutionary Mating Algorithm (EMA). The model predicts both a continuous risk score and a binary diagnostic outcome, supporting both quantitative assessment and early clinical decision-making. EMA was applied for hyperparameter optimization, demonstrating improved convergence and generalization over conventional methods. Performance was benchmarked against CNN-LSTM models optimized using Particle Swarm Optimization (PSO) and Barnacle Mating Optimization (BMO). The EMA-based model achieved superior results, with a Mean Absolute Error (MAE) of 0.018, Mean Squared Error (MSE) of 0.0006, Root Mean Squared Error (RMSE) of 0.024, and a coefficient of determination (R²) of 0.98 for risk prediction. For the diagnostic task, the model attained 70 % accuracy and 80 % precision. These findings validate EMA’s effectiveness in tuning dual-output deep learning models and highlight its potential in enhancing cardiovascular risk stratification and early diagnosis in clinical settings.<ul><li><span>•</span><span><div>Dual-output CNN-LSTM model optimized using EMA.</div></span></li><li><span>•</span><span><div>Continuous risk scores and binary diagnostic classification predictions.</div></span></li><li><span>•</span><span><div>EMA outperformed PSO and BMO in predictive accuracy and model robustness.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103466"},"PeriodicalIF":1.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated deep learning for cardiovascular risk assessment and diagnosis: An evolutionary mating algorithm-enhanced CNN-LSTM\",\"authors\":\"Ahmed Mohammed Ahmed Alsarori,&nbsp;Mohd Herwan Sulaiman\",\"doi\":\"10.1016/j.mex.2025.103466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide, emphasizing the urgent need for accurate and efficient predictive models. This study proposes a dual-output deep learning model based on a hybrid Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model, optimized using the Evolutionary Mating Algorithm (EMA). The model predicts both a continuous risk score and a binary diagnostic outcome, supporting both quantitative assessment and early clinical decision-making. EMA was applied for hyperparameter optimization, demonstrating improved convergence and generalization over conventional methods. Performance was benchmarked against CNN-LSTM models optimized using Particle Swarm Optimization (PSO) and Barnacle Mating Optimization (BMO). The EMA-based model achieved superior results, with a Mean Absolute Error (MAE) of 0.018, Mean Squared Error (MSE) of 0.0006, Root Mean Squared Error (RMSE) of 0.024, and a coefficient of determination (R²) of 0.98 for risk prediction. For the diagnostic task, the model attained 70 % accuracy and 80 % precision. These findings validate EMA’s effectiveness in tuning dual-output deep learning models and highlight its potential in enhancing cardiovascular risk stratification and early diagnosis in clinical settings.<ul><li><span>•</span><span><div>Dual-output CNN-LSTM model optimized using EMA.</div></span></li><li><span>•</span><span><div>Continuous risk scores and binary diagnostic classification predictions.</div></span></li><li><span>•</span><span><div>EMA outperformed PSO and BMO in predictive accuracy and model robustness.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"15 \",\"pages\":\"Article 103466\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125003115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125003115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病(CVD)仍然是世界范围内死亡的主要原因,强调迫切需要准确和有效的预测模型。本研究提出了一种基于卷积神经网络-长短期记忆(CNN-LSTM)混合模型的双输出深度学习模型,并使用进化配对算法(EMA)进行优化。该模型预测了连续风险评分和二元诊断结果,支持定量评估和早期临床决策。EMA应用于超参数优化,证明了优于传统方法的收敛性和泛化性。通过粒子群优化(PSO)和藤壶配对优化(BMO)对CNN-LSTM模型进行性能测试。基于ema的模型预测风险的平均绝对误差(MAE)为0.018,均方误差(MSE)为0.0006,均方根误差(RMSE)为0.024,决定系数(R²)为0.98。对于诊断任务,该模型的准确率达到70%,精密度达到80%。这些发现验证了EMA在调整双输出深度学习模型方面的有效性,并强调了其在增强心血管风险分层和临床早期诊断方面的潜力。•使用EMA优化的双输出CNN-LSTM模型。•持续风险评分和二元诊断分类预测。•EMA在预测准确性和模型稳健性方面优于PSO和BMO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrated deep learning for cardiovascular risk assessment and diagnosis: An evolutionary mating algorithm-enhanced CNN-LSTM

Integrated deep learning for cardiovascular risk assessment and diagnosis: An evolutionary mating algorithm-enhanced CNN-LSTM
Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide, emphasizing the urgent need for accurate and efficient predictive models. This study proposes a dual-output deep learning model based on a hybrid Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model, optimized using the Evolutionary Mating Algorithm (EMA). The model predicts both a continuous risk score and a binary diagnostic outcome, supporting both quantitative assessment and early clinical decision-making. EMA was applied for hyperparameter optimization, demonstrating improved convergence and generalization over conventional methods. Performance was benchmarked against CNN-LSTM models optimized using Particle Swarm Optimization (PSO) and Barnacle Mating Optimization (BMO). The EMA-based model achieved superior results, with a Mean Absolute Error (MAE) of 0.018, Mean Squared Error (MSE) of 0.0006, Root Mean Squared Error (RMSE) of 0.024, and a coefficient of determination (R²) of 0.98 for risk prediction. For the diagnostic task, the model attained 70 % accuracy and 80 % precision. These findings validate EMA’s effectiveness in tuning dual-output deep learning models and highlight its potential in enhancing cardiovascular risk stratification and early diagnosis in clinical settings.
  • Dual-output CNN-LSTM model optimized using EMA.
  • Continuous risk scores and binary diagnostic classification predictions.
  • EMA outperformed PSO and BMO in predictive accuracy and model robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信