应用aco优化的极端随机树预测组合荷载作用下裙边柱脚的破坏包络

IF 4 2区 工程技术 Q1 ENGINEERING, CIVIL
Katavut Vichai , Duy Tan Tran , Jim Shiau , Suraparb Keawsawasvong , Pitthaya Jamsawang
{"title":"应用aco优化的极端随机树预测组合荷载作用下裙边柱脚的破坏包络","authors":"Katavut Vichai ,&nbsp;Duy Tan Tran ,&nbsp;Jim Shiau ,&nbsp;Suraparb Keawsawasvong ,&nbsp;Pitthaya Jamsawang","doi":"10.1016/j.marstruc.2025.103890","DOIUrl":null,"url":null,"abstract":"<div><div>Skirted spudcan foundations are widely employed in offshore geotechnical engineering due to their enhanced penetration capability and superior load resistance in soft clay soils. In this study, the undrained failure envelope of skirted spudcan subjected to combined vertical, horizontal, and moment (VHM) loading is investigated using Finite Element Limit Analysis (FELA). A total of 624 simulations are performed in OptumG3, systematically varying the embedment ratio (<em>L/D</em>), soil strength heterogeneity (<em>κ</em>), vertical load mobilization (<em>V/V<sub>0</sub></em>), and loading limit for the FELA (<em>β</em>) to construct the VHM failure envelope in non-homogeneous clay. To complement the numerical approach and mitigate computational intensity, a machine learning model is developed using Extremely Randomized Trees (ET) optimized via Ant Colony Optimization (ACO). The resulting ET-ACO model demonstrates excellent agreement with the FELA outcomes, achieving R² values exceeding 0.998. Feature importance analysis highlights the FELA loading limit (<em>β</em>) and embedment ratio (<em>L/D</em>) as the most influential parameters governing failure capacity. This data-driven methodology provides a reliable and effective alternative for evaluating offshore foundation performance, as it not only accelerates the prediction of failure envelopes but also significantly reduces computational costs.</div></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"104 ","pages":"Article 103890"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting failure envelopes of skirted spudcan footings under combined loads using ACOoptimized extremely randomized trees\",\"authors\":\"Katavut Vichai ,&nbsp;Duy Tan Tran ,&nbsp;Jim Shiau ,&nbsp;Suraparb Keawsawasvong ,&nbsp;Pitthaya Jamsawang\",\"doi\":\"10.1016/j.marstruc.2025.103890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Skirted spudcan foundations are widely employed in offshore geotechnical engineering due to their enhanced penetration capability and superior load resistance in soft clay soils. In this study, the undrained failure envelope of skirted spudcan subjected to combined vertical, horizontal, and moment (VHM) loading is investigated using Finite Element Limit Analysis (FELA). A total of 624 simulations are performed in OptumG3, systematically varying the embedment ratio (<em>L/D</em>), soil strength heterogeneity (<em>κ</em>), vertical load mobilization (<em>V/V<sub>0</sub></em>), and loading limit for the FELA (<em>β</em>) to construct the VHM failure envelope in non-homogeneous clay. To complement the numerical approach and mitigate computational intensity, a machine learning model is developed using Extremely Randomized Trees (ET) optimized via Ant Colony Optimization (ACO). The resulting ET-ACO model demonstrates excellent agreement with the FELA outcomes, achieving R² values exceeding 0.998. Feature importance analysis highlights the FELA loading limit (<em>β</em>) and embedment ratio (<em>L/D</em>) as the most influential parameters governing failure capacity. This data-driven methodology provides a reliable and effective alternative for evaluating offshore foundation performance, as it not only accelerates the prediction of failure envelopes but also significantly reduces computational costs.</div></div>\",\"PeriodicalId\":49879,\"journal\":{\"name\":\"Marine Structures\",\"volume\":\"104 \",\"pages\":\"Article 103890\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951833925001133\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833925001133","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

裙边桩基础因其在软粘土中具有较强的穿透能力和较强的抗荷载能力,在海上岩土工程中得到广泛应用。在这项研究中,采用有限元极限分析(FELA)研究了受垂直、水平和弯矩(VHM)组合载荷影响的裙边式阀嘴的不排水破坏包络线。在OptumG3中进行了624次模拟,系统地改变了埋置比(L/D)、土壤强度非均质性(κ)、垂直荷载动员(V/V0)和加载极限(β),以构建非均质粘土中的VHM破坏包络线。为了补充数值方法并减轻计算强度,使用蚁群优化(ACO)优化的极度随机树(ET)开发了机器学习模型。所得ET-ACO模型与FELA结果吻合良好,R²值超过0.998。特征重要性分析表明,FELA加载极限(β)和嵌入比(L/D)是影响破坏能力的最重要参数。这种数据驱动的方法为评估海上基础性能提供了一种可靠而有效的替代方法,因为它不仅加快了对破坏包络层的预测,而且显著降低了计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting failure envelopes of skirted spudcan footings under combined loads using ACOoptimized extremely randomized trees
Skirted spudcan foundations are widely employed in offshore geotechnical engineering due to their enhanced penetration capability and superior load resistance in soft clay soils. In this study, the undrained failure envelope of skirted spudcan subjected to combined vertical, horizontal, and moment (VHM) loading is investigated using Finite Element Limit Analysis (FELA). A total of 624 simulations are performed in OptumG3, systematically varying the embedment ratio (L/D), soil strength heterogeneity (κ), vertical load mobilization (V/V0), and loading limit for the FELA (β) to construct the VHM failure envelope in non-homogeneous clay. To complement the numerical approach and mitigate computational intensity, a machine learning model is developed using Extremely Randomized Trees (ET) optimized via Ant Colony Optimization (ACO). The resulting ET-ACO model demonstrates excellent agreement with the FELA outcomes, achieving R² values exceeding 0.998. Feature importance analysis highlights the FELA loading limit (β) and embedment ratio (L/D) as the most influential parameters governing failure capacity. This data-driven methodology provides a reliable and effective alternative for evaluating offshore foundation performance, as it not only accelerates the prediction of failure envelopes but also significantly reduces computational costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Structures
Marine Structures 工程技术-工程:海洋
CiteScore
8.70
自引率
7.70%
发文量
157
审稿时长
6.4 months
期刊介绍: This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信