利用传统和多普勒超声图像增强甲状腺结节评估的弱监督数据增强网络

IF 7 2区 医学 Q1 BIOLOGY
Chadaporn Keatmanee , Dittapong Songsaeng , Songphon Klabwong , Yoichi Nakaguro , Alisa Kunapinun , Mongkol Ekpanyapong , Matthew N. Dailey
{"title":"利用传统和多普勒超声图像增强甲状腺结节评估的弱监督数据增强网络","authors":"Chadaporn Keatmanee ,&nbsp;Dittapong Songsaeng ,&nbsp;Songphon Klabwong ,&nbsp;Yoichi Nakaguro ,&nbsp;Alisa Kunapinun ,&nbsp;Mongkol Ekpanyapong ,&nbsp;Matthew N. Dailey","doi":"10.1016/j.compbiomed.2025.110553","DOIUrl":null,"url":null,"abstract":"<div><div>Thyroid ultrasound (US) is an essential tool for detecting and characterizing thyroid nodules. In this study, we propose an innovative approach to enhance thyroid nodule assessment by integrating Doppler US images with grayscale US images through weakly supervised data augmentation networks (WSDAN). Our method reduces background noise by replacing inefficient augmentation strategies, such as random cropping, with an advanced technique guided by bounding boxes derived from Doppler US images. This targeted augmentation significantly improves model performance in both classification and localization of thyroid nodules. The training dataset comprises 1288 paired grayscale and Doppler US images, with an additional 190 pairs used for three-fold cross-validation. To evaluate the model’s efficacy, we tested it on a separate set of 190 grayscale US images. Compared to five state-of-the-art models and the original WSDAN, our Enhanced WSDAN model achieved superior performance. For classification, it reached an accuracy of 91%. For localization, it achieved Dice and Jaccard indices of 75% and 87%, respectively, demonstrating its potential as a valuable clinical tool.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"196 ","pages":"Article 110553"},"PeriodicalIF":7.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing weakly supervised data augmentation networks for thyroid nodule assessment using traditional and doppler ultrasound images\",\"authors\":\"Chadaporn Keatmanee ,&nbsp;Dittapong Songsaeng ,&nbsp;Songphon Klabwong ,&nbsp;Yoichi Nakaguro ,&nbsp;Alisa Kunapinun ,&nbsp;Mongkol Ekpanyapong ,&nbsp;Matthew N. Dailey\",\"doi\":\"10.1016/j.compbiomed.2025.110553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thyroid ultrasound (US) is an essential tool for detecting and characterizing thyroid nodules. In this study, we propose an innovative approach to enhance thyroid nodule assessment by integrating Doppler US images with grayscale US images through weakly supervised data augmentation networks (WSDAN). Our method reduces background noise by replacing inefficient augmentation strategies, such as random cropping, with an advanced technique guided by bounding boxes derived from Doppler US images. This targeted augmentation significantly improves model performance in both classification and localization of thyroid nodules. The training dataset comprises 1288 paired grayscale and Doppler US images, with an additional 190 pairs used for three-fold cross-validation. To evaluate the model’s efficacy, we tested it on a separate set of 190 grayscale US images. Compared to five state-of-the-art models and the original WSDAN, our Enhanced WSDAN model achieved superior performance. For classification, it reached an accuracy of 91%. For localization, it achieved Dice and Jaccard indices of 75% and 87%, respectively, demonstrating its potential as a valuable clinical tool.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"196 \",\"pages\":\"Article 110553\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525009047\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525009047","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

甲状腺超声(US)是检测和诊断甲状腺结节的重要工具。在这项研究中,我们提出了一种创新的方法,通过弱监督数据增强网络(WSDAN)整合多普勒超声图像和灰度超声图像来增强甲状腺结节的评估。我们的方法通过替换低效的增强策略(如随机裁剪)来降低背景噪声,并用一种由多普勒US图像衍生的边界框引导的先进技术。这种有针对性的增强显著提高了模型在甲状腺结节分类和定位方面的性能。训练数据集包括1288对灰度和多普勒US图像,另外190对用于三重交叉验证。为了评估该模型的有效性,我们在一组单独的190张灰度美国图像上对其进行了测试。与五种最先进的模型和原始WSDAN相比,我们的增强型WSDAN模型取得了卓越的性能。在分类方面,准确率达到91%。在定位方面,它的Dice和Jaccard指数分别达到75%和87%,显示了它作为一种有价值的临床工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing weakly supervised data augmentation networks for thyroid nodule assessment using traditional and doppler ultrasound images

Enhancing weakly supervised data augmentation networks for thyroid nodule assessment using traditional and doppler ultrasound images
Thyroid ultrasound (US) is an essential tool for detecting and characterizing thyroid nodules. In this study, we propose an innovative approach to enhance thyroid nodule assessment by integrating Doppler US images with grayscale US images through weakly supervised data augmentation networks (WSDAN). Our method reduces background noise by replacing inefficient augmentation strategies, such as random cropping, with an advanced technique guided by bounding boxes derived from Doppler US images. This targeted augmentation significantly improves model performance in both classification and localization of thyroid nodules. The training dataset comprises 1288 paired grayscale and Doppler US images, with an additional 190 pairs used for three-fold cross-validation. To evaluate the model’s efficacy, we tested it on a separate set of 190 grayscale US images. Compared to five state-of-the-art models and the original WSDAN, our Enhanced WSDAN model achieved superior performance. For classification, it reached an accuracy of 91%. For localization, it achieved Dice and Jaccard indices of 75% and 87%, respectively, demonstrating its potential as a valuable clinical tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信