Marcos Frías , Carmen Badosa , Cecilia Jimenez-Mallebrera , Josep M. Porta , Mònica Roldán
{"title":"人工智能在罕见病诊断中的挑战:以VI型胶原肌营养不良症为例","authors":"Marcos Frías , Carmen Badosa , Cecilia Jimenez-Mallebrera , Josep M. Porta , Mònica Roldán","doi":"10.1016/j.compbiomed.2025.110610","DOIUrl":null,"url":null,"abstract":"<div><div>The use of artificial intelligence (AI) techniques is significantly changing the analysis of medical images, accelerating and standardizing the diagnosis process. To train an AI model, however, a large dataset is typically required, especially when using the most powerful techniques. Therefore, not all specialties are taking advantage of AI techniques in the same way. For instance, they are seldomly used in areas such as the diagnosis of rare diseases since, due to their low prevalence, not enough data are typically available to train an AI model. In this paper, we address the use of AI techniques to diagnose a particular rare disease: Collagen VI-related Congenital Muscular Dystrophy from confocal microscopy images. We apply both classical machine learning and modern deep learning techniques and we show that, when using the appropriate data management and training procedures, one can successfully derive a highly-accurate classifier even with a limited amount of training data. Due to the generality of the explored techniques, this conclusion is likely to hold also for most of the rare diseases whose diagnosis relies on the examination of histological images.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"196 ","pages":"Article 110610"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The artificial intelligence challenge in rare disease diagnosis: A case study on collagen VI muscular dystrophy\",\"authors\":\"Marcos Frías , Carmen Badosa , Cecilia Jimenez-Mallebrera , Josep M. Porta , Mònica Roldán\",\"doi\":\"10.1016/j.compbiomed.2025.110610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of artificial intelligence (AI) techniques is significantly changing the analysis of medical images, accelerating and standardizing the diagnosis process. To train an AI model, however, a large dataset is typically required, especially when using the most powerful techniques. Therefore, not all specialties are taking advantage of AI techniques in the same way. For instance, they are seldomly used in areas such as the diagnosis of rare diseases since, due to their low prevalence, not enough data are typically available to train an AI model. In this paper, we address the use of AI techniques to diagnose a particular rare disease: Collagen VI-related Congenital Muscular Dystrophy from confocal microscopy images. We apply both classical machine learning and modern deep learning techniques and we show that, when using the appropriate data management and training procedures, one can successfully derive a highly-accurate classifier even with a limited amount of training data. Due to the generality of the explored techniques, this conclusion is likely to hold also for most of the rare diseases whose diagnosis relies on the examination of histological images.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"196 \",\"pages\":\"Article 110610\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525009618\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525009618","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
The artificial intelligence challenge in rare disease diagnosis: A case study on collagen VI muscular dystrophy
The use of artificial intelligence (AI) techniques is significantly changing the analysis of medical images, accelerating and standardizing the diagnosis process. To train an AI model, however, a large dataset is typically required, especially when using the most powerful techniques. Therefore, not all specialties are taking advantage of AI techniques in the same way. For instance, they are seldomly used in areas such as the diagnosis of rare diseases since, due to their low prevalence, not enough data are typically available to train an AI model. In this paper, we address the use of AI techniques to diagnose a particular rare disease: Collagen VI-related Congenital Muscular Dystrophy from confocal microscopy images. We apply both classical machine learning and modern deep learning techniques and we show that, when using the appropriate data management and training procedures, one can successfully derive a highly-accurate classifier even with a limited amount of training data. Due to the generality of the explored techniques, this conclusion is likely to hold also for most of the rare diseases whose diagnosis relies on the examination of histological images.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.