基于lstm的水产养殖系统溶解氧准确预测的增强AI模型

IF 5.7 Q1 AGRICULTURAL ENGINEERING
Ala Saleh Alluhaidan , Prabu P , Romana Aziz , Shakila Basheer
{"title":"基于lstm的水产养殖系统溶解氧准确预测的增强AI模型","authors":"Ala Saleh Alluhaidan ,&nbsp;Prabu P ,&nbsp;Romana Aziz ,&nbsp;Shakila Basheer","doi":"10.1016/j.atech.2025.101140","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate monitoring and prediction of dissolved oxygen (DO) levels in aquaculture systems are crucial for maintaining optimal water quality and ensuring fish health. This study presents an enhanced Long Short-Term Memory (LSTM)-based model for DO prediction, leveraging historical data on DO levels, water temperature, and other environmental parameters. Unlike traditional methods that rely on fixed assumptions, the proposed model dynamically adapts to changing environmental conditions, offering real-time, high-precision forecasts. Experimental results demonstrate that the enhanced LSTM model achieves a prediction accuracy of 92.28 %, outperforming existing models such as IFP (81.97 %), DOE (63.81 %), and DOP (86.79 %)<strong>.</strong> The model’s superior accuracy and adaptability make it a reliable tool for aquaculture management, helping to optimize DO levels and reduce the risk of fish mortality. By integrating artificial intelligence into aquaculture monitoring, this approach contributes to improved system productivity and sustainability.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"12 ","pages":"Article 101140"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced LSTM-based AI model for accurate dissolved oxygen prediction in aquaculture systems\",\"authors\":\"Ala Saleh Alluhaidan ,&nbsp;Prabu P ,&nbsp;Romana Aziz ,&nbsp;Shakila Basheer\",\"doi\":\"10.1016/j.atech.2025.101140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate monitoring and prediction of dissolved oxygen (DO) levels in aquaculture systems are crucial for maintaining optimal water quality and ensuring fish health. This study presents an enhanced Long Short-Term Memory (LSTM)-based model for DO prediction, leveraging historical data on DO levels, water temperature, and other environmental parameters. Unlike traditional methods that rely on fixed assumptions, the proposed model dynamically adapts to changing environmental conditions, offering real-time, high-precision forecasts. Experimental results demonstrate that the enhanced LSTM model achieves a prediction accuracy of 92.28 %, outperforming existing models such as IFP (81.97 %), DOE (63.81 %), and DOP (86.79 %)<strong>.</strong> The model’s superior accuracy and adaptability make it a reliable tool for aquaculture management, helping to optimize DO levels and reduce the risk of fish mortality. By integrating artificial intelligence into aquaculture monitoring, this approach contributes to improved system productivity and sustainability.</div></div>\",\"PeriodicalId\":74813,\"journal\":{\"name\":\"Smart agricultural technology\",\"volume\":\"12 \",\"pages\":\"Article 101140\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart agricultural technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772375525003727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525003727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

水产养殖系统中溶解氧(DO)水平的准确监测和预测对于维持最佳水质和确保鱼类健康至关重要。本研究提出了一种基于增强型长短期记忆(LSTM)的溶解氧预测模型,该模型利用了溶解氧水平、水温和其他环境参数的历史数据。与依赖固定假设的传统方法不同,该模型可动态适应不断变化的环境条件,提供实时、高精度的预测。实验结果表明,改进后的LSTM模型的预测准确率为92.28%,优于现有的IFP(81.97%)、DOE(63.81%)和DOP(86.79%)模型。该模型具有优异的准确性和适应性,是水产养殖管理的可靠工具,有助于优化DO水平,降低鱼类死亡风险。通过将人工智能整合到水产养殖监测中,该方法有助于提高系统生产力和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced LSTM-based AI model for accurate dissolved oxygen prediction in aquaculture systems
Accurate monitoring and prediction of dissolved oxygen (DO) levels in aquaculture systems are crucial for maintaining optimal water quality and ensuring fish health. This study presents an enhanced Long Short-Term Memory (LSTM)-based model for DO prediction, leveraging historical data on DO levels, water temperature, and other environmental parameters. Unlike traditional methods that rely on fixed assumptions, the proposed model dynamically adapts to changing environmental conditions, offering real-time, high-precision forecasts. Experimental results demonstrate that the enhanced LSTM model achieves a prediction accuracy of 92.28 %, outperforming existing models such as IFP (81.97 %), DOE (63.81 %), and DOP (86.79 %). The model’s superior accuracy and adaptability make it a reliable tool for aquaculture management, helping to optimize DO levels and reduce the risk of fish mortality. By integrating artificial intelligence into aquaculture monitoring, this approach contributes to improved system productivity and sustainability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信